X Close

Researchers in Museums

Home

Engaging the public with research & collections

Menu

The Mystery of Iridescence in Glass

By Anna Pokorska, on 20 May 2019

This is the second part on a series on ‘Iridescence’. You can read the first part here, or return and read an introduction to colours, as well as individually about the colours blue, red, yellow, and green

If you’ve ever wandered through a museum displaying ancient artefacts, chances are you were amazed at the quality and artistry displayed in glass objects of that time. The   has some incredible pieces shining with iridescent colours:

Left: glass weight from the Fatimid period; Middle: glass fragment from the Roman period, possibly part of an eye amulet; Right: glass fragment from the late Roman period (Petrie Museum: UC13298, UC22744, UC67914).

However, despite the undeniable talents of ancient glassmakers, this particular effect was not intentional or even achieved during production. In fact, iridescence found in ancient glass is a result of weathering of its surface caused by burial.  The weathering process itself depends largely on the burial conditions such as heat, humidity and type of soil, although the chemistry of the glass, determined by the purity of raw materials and their compositional ratio, also plays a part. The iridescence is produced when alkalis, or soluble salts, are leached from the buried glass by slightly acidic water present in the soil. This in turn causes the formation of very fine layers which can delaminate or even flake off creating a prism effect.

But it wasn’t until the very end of the 19th century that the iridescence of ancient glass was replicated by Louis Comfort Tiffany (1848-1933), the son of Charles Tiffany – the New York jeweller. He began his career as an aspiring painter but soon realised that his true potential was in interior decoration. It is generally thought that during his extensive travels Tiffany became inspired by the glasswork and mosaics of antiquity and devoted to the idea of restoring stained glass to its former glory by striving to achieve the same standards of beauty as the ones present in antique masterpieces[1]. Prior to the twelfth century, stained glass works were executed with differently coloured glass pieces as opposed to the later technique of painting on clear glass, which dulled it considerably and created a flat two-dimensional effect. Tiffany’s experiments with glass during the 1880s completely revolutionized the look of the medium and in 1894 he patented favrile glass[2]. By adding different or same shades of colour into the hot mixture Tiffany created a material different from other iridescent glasses as the effect was not just confined to the surface but part of the glass itself.

Tiffany Glass and Decorating Company was established in 1892 in New York and began producing its first favrile glass objects 1896, examples of which can be found in the Victoria and Albert Museum collection as well as other major museums, particularly in America.

Favrile glass objects produced by the Tiffany Glass and Decorating Company between 1896 and 1902 (Image: © Victoria and Albert Museum, London).

Left: “The Flight of Souls”, Tiffany stained glass window which won first prize at the 1900 Paris Exposition, now at the Wade Memorial Chapel, Cleveland, Ohio (Image: CoffeeDoc03); Right: Hanging Head Dragonfly Tiffany lamp from the Art Institute of Chicago collection (Image: mark6mauno).

Tiffany won first prize for the above stained-glass window using his new material at the 1900 Paris Exposition and continued to use favrile for other products, including his famous lamps. Being the innovator that he was, he also carried on experimenting with the medium, eventually developing many other, equally impressive, types of glass such as opalescent, streamer, fracture, ring-mottle, ripple and drapery. But that’s for another time!

[1]     Bing, S Louis C. Tiffany’s Coloured Glass Work, in Artistic America, Tiffany glass and Art Nouveau, Cambridge (Mass.); London: M.I.T. Press, 1970

[2]     The original trade name was actually fabrile, which was derived from an Old English word meaning ‘handcrafted’.

Iridescence, a natural superpower

By Anna Pokorska, on 1 May 2019

So far, in my previous blog posts I’ve talked about individual colours and how they were created and used in Ancient Egypt (see the beginning of the series here). But let us now explore a fascinating property which brings them all together – iridescence. It’s a phenomenon whereby surface colour appears to change with the angle of viewing or illumination and is caused by an optical effect rather than pigmentation. The word itself derives from the Greek goddess of the rainbow – Iris, while the Latin suffix ‘-escent’ means having a tendency towards something. A perhaps less glamorous term for iridescence, goniochromism, can also be traced back to Greek words ‘gonia’ meaning angle, and ‘chroma’ meaning colour.

Iris Carrying the Water of the River Styx to Olympus for the Gods to Swear By, Guy Head, c. 1793 – Nelson-Atkins Museum of Art (Photo: Daderot).

Iridescence is a type of structural colouration and occurs in the natural world (e.g. insects, birds) as well as in man-made materials (glass, soap bubbles, playing surface of a CD).

Blue Morpho butterfly showing off its glorious colour (Photo: Derkarts).

A brilliant example of the use of iridescence in nature can be found in the Blue Morpho butterfly (Morpho menelaus) whose upper wings appear to be bright blue. It is one of the largest butterflies in the world and can be found in South American rainforests. Those beautiful and rare butterflies use iridescence to evade predators by becoming briefly invisible! As they fly, the colour of their wings shifts between brilliant blue and brown, so against the background of the forest and sky they seem to disappear for a flash just to reappear a little further away, confusing anyone who might be trying to catch them.

Perhaps a more familiar example of iridescent colouring is mother-of-pearl, or nacre, which has long been admired and used for many decorative purposes, from jewellery to furniture, artwork to cutlery. Some specimens can even be found in the Petrie Museum collection. In nature, nacre occurs on the inner shell of some molluscs (such as abalone sea snails) or on the surface of pearls. Its purpose is once again defensive as the molluscs secrete layers of nacre on the inner surface of their shells to protect the soft layers beneath from parasites and debris. As a material, nacre is made up of tiny hexagonal platelets of aragonite, a form of calcium carbonate. The thickness of the platelets (between 300 and 1500 nm) allows them  to interfere with different wavelengths of visible light at various viewing angles, creating an iridescent effect. However, studies using Scanning Electron Microscopy (SEM) have shown that the effect is also partially caused by diffraction resulting from a high groove density of the surface.

Inside of an abalone shell (Photo: Marac).

Some plants have also evolved to use thin layers of photosynthetic structures, called iridoplasts, to bend and absorb more light in dark environments such as the lower levels of tropical forests. This causes the surface of their leaves to appear iridescent and almost glowing in the dark. For instance, peacock begonia (Begonia pavonina) from South East Asia shows a beautifully intense metallic blue as it amplifies  the small amount of visible light it receives. The iridoplasts bend the light repeatedly thus making very efficient use of long red and green wavelengths while reflecting the blue ones.

Peacock begonia (Photo: Shyamal).

Many more examples of iridescence exist in nature and this blog post could easily become a very long article if I attempted to include them all. I guess it’s very easy to assume that this phenomenon is mainly decorative and meant to create attraction, like peacock’s feathers for example. But, as we can see, there are plenty of instances where the effect serves a purpose very different to what we might originally have imagined or is an almost accidental by-product of a completely unrelated function . In my next post I will explore how one man managed to replicate natural iridescence for purely ornamental purposes, so stay tuned for Part 2!