A A A

The Plagues of Egypt

By Hannah B Page, on 23 October 2018

For my blog post this week I am starting a new series based loosely on the Plagues of Egypt. The idea came to me while I was working in the Grant Museum and was thinking about possible connections between the Grant and the Petrie Museum of Egyptian Archaeology. For some reason as I was stood next to the insect cabinet, the plague of locusts was the first thing that came to mind.. and conveniently, I have already written a blog post about the 2nd plague of frogs. Before I launch in I must note briefly that I don’t particularly wish to talk about religion or religious texts. Instead I will use the 10 plagues to discuss some (hopefully) interesting zoological and sociocultural phenomena that link the two museums.

So, what are the 10 Plagues of Egypt?

  1. Water turning into blood
  2. Frogs
  3. Lice
  4. Wild animals
  5. Diseased livestock
  6. Boils
  7. Thunderstorms of hail and fire
  8. Locusts
  9. Darkness for three days
  10. Death of the firstborn

The first plague of water turning into blood is an interesting one to start with, but the topic of the two liquids is very pertinent to both collections. Water has an incredibly important role in the ideological and cultural landscape of ancient Egypt. The waters of the Nile were the lifeblood of ancient Egyptian society. It provided vital irrigation for farming, transport through the kingdom, and was linked closely with ideology and religion in Egypt. The Greek Herodotus is recorded as calling Egypt the “gift of the Nile”, implying that Egypt itself was born from the river—this further develops an idea I have discussed in a previous blog post: that the Nile is deeply connected with fertility. With this in mind it is not difficult to see how devastating the idea of water turning into blood would be for Egyptian society.

One papyrus from the twelfth dynasty (c.1991-1803 BCE) interestingly states that the “river is blood“, which has caused some debate over the occurrence of the plagues in Egyptian history. However, the most probable explanation is that during the harsh flooding of the Nile the disturbed red river silt would create this phenomena.

Blood as well as water was also symbolically significant to the Ancient Egyptians. Wine was given as “blood of the Gods” during certain religious offerings, something akin to the Christian symbolism of using wine as the blood of Christ, and the deity Shesmu is also linked with blood, being the lord of wine and the “great slaughterer of the gods”.

It is also not difficult to connect the Grant Museum with water and blood as they are both vital components to many living creatures on earth. For this post I wish to focus in on one of my favourite water dwellers in the museum and one that has a deep connection with ancient Egypt. This mammal can certainly displace a lot of water and coincidently produces a fluid over its skin that is often called blood sweat. The hippopotamus, known as a “river horse” by the ancient Greeks secretes a substance called hipposudoric acid. The liquid is red, which gives it its colloquial name, but it is neither sweat nor blood. In fact the secretion is an example of an evolutionary masterpiece—a natural sunscreen! This fluid is very much needed due to their skin being exposed in blistering high UV environments (and being a redhead who works in sub-Saharan Africa- I can fully appreciate this)! As well as the blood sweat creating UV protection it is also a very good antiseptic, which is useful as hippos can be extremely aggressive animals.

Fig 2. Hippo skull in the Grant Museum of Zoology (Catalogue no. Z32)

Sadly, the hippo is no longer found in Egypt but in dynastic times it was a hazard to boat travellers along the Nile and was present in ideological and cultural symbolism.  The deity Taweret was often depicted in the form of a pregnant hippo as she represented fertility (like frogs!). Hippo figurines are also found on ancient Egyptian sites (Fig 3) and hippo tusk ivory was used to make pendants, amulets and sculptural pieces.

Fig 3. Blue glazed faience hippopotamus (Petrie Museum Catalogue No. UC45074)

As you can see, water and blood were and still are incredibly important cultural symbols, most probably due to their inescapable connection to the natural world and to life and death. It really is no wonder that that these themes come up time and time again all over the world.

I hope you have enjoyed my first foray into the Plagues of Egypt as much as I have… I’m quite excited about what direction they might take my research in next!

Question of the Week: Why does the Kingfisher look blue?

By Cerys R Jones, on 25 September 2018

The Common Kingfisher is one of Britain’s most colourful native birds and a personal favourite of mine. Despite the name, the Common Kingfisher isn’t actually all that common. I’ve only been lucky enough to see one in the wild and it was a brief encounter; I still vividly remember the bright blue flash of its feathers. Although these creatures are known for their striking colours, the blue feathers down the back of the Kingfisher are actually brown.

The bright blue colour you perceive is due to a phenomenon called structural colouration. Structural  colouration is seen throughout the animal kingdom and makes creatures appear much more colourful than they actually are. So while the coloured pigments in the kingfisher’s feathers are brown, you actually view them as a brilliant blue.


The brightly coloured Common Kingfisher (Image: Avijan saha)

Structural colouration, first described by Robert Hooke and Isaac Newton, is when the observed colour of an object is not due to the pigment but rather caused by some interference effects instead. The structure of the object itself causes a different colour to be perceived than what would typically be observed by the pigment. Structural colouration can result in iridescent colours – i.e. colours that are dependent on the viewing angle – or non-iridescent colours, when the colour remains constant regardless of the viewing angle. Examples of iridescent colours are the feathers of a peacock, which are also pigmented brown but appear blue due to the structural colouration, and the setea (or spines) of the sea mouse. The nanostructures of the setea of the sea mouse and peacock feathers are regular and so reflect the light in the same direction. This means that the bright colour is only perceived at a certain angle.

The setea of the sea mouse appear red, green and blue to act as a warning to potential predators. The sea mice in the Grant Museum are some of my favourite specimens in the museum and are often unfortunately overlooked by visitors. Their interesting name likely derives from the fact that they look like drowned mice when washed up on shore, but their Latin name, Aphrodita, comes from the Ancient Greek goddess of love, Aphrodite, supposedly due to their resemblance to female anatomy…

The Sea Mouse specimen in the Grant Museum, G15 (Author’s own photo)

In contrast, the kingfisher’s feathers are an example of non-iridescent structural colouration. The blue stripe appears blue regardless of the angle of the viewer. This is because the structures are randomly oriented and so the reflections of the light are not angled in the same direction. The blue-and-yellow macaw similarly displays bright blue feathers that are due to non-iridescent structural coloration. These feathers also contain the brown-black pigment melanin that is present in those of the kingfisher.

Let that be a lesson that you can never trust your eyes – at least, not when it comes to structural colouration! Next time you visit the Grant Museum, look out for our kingfisher taxidermy specimen, the sea mice and any other brightly coloured creatures that may be cleverly appearing more colourful than their pigments might suggest!

To read more about this phenomenon, check out this paper.

Summer Lovin’: Why You Need a Pachyderm Paramour

By Sarah M Gibbs, on 23 July 2018

Here’s a special issue of Jungle-politan by our Senior Relationships Correspondent, Sarah Serengeti.

Hey there, Savannah Sisters. I don’t know about you, but when the temperature climbs, the first thing I think about (other than how to avoid crocodile attacks at ever-shrinking watering holes—those cheeky devils!) is summer love. But today’s confusing dating environment often leaves a girl with more questions than answers. Should you go Dutch on that leg of antelope? When is the right time to let him challenge your pack alpha? Is he really that buff, or is he just distending his salivary glands to impress you? Maybe you’re sold on the chimp’s personality. A man who can juggle? What’s not to like? Or perhaps you think the sloth would be your ideal “Netflix-and-Chill” partner. For some ladies, it’s the handyman—the industrious beaver has raised more than a few heart rates—while others live for the bad boy, lone-wolf wolf. But let me tell you from experience, he may hold your paw while you get that full moon tattoo, but he’ll have split long before the ink dries.

That’s why I’m pursuing a new type of man, one with a feature that just can’t be beat: a giant heart. That’s right, girls. This week’s column is dedicated to the African elephant, and let me assure you, the world’s largest land mammal is one of the few tall men whose parts are proportionate. Don’t believe me? Drop by UCL’s Grant Museum of Zoology, where the preserved heart below in on display.

Elephant Heart (Grant Museum, Z639)

Who doesn’t want a partner whose heart weighs in at a mighty 20 to 30 kilograms? That’s a titanic ticker! It’s ten times as heavy as that purse dog you lost when Nigel the Anaconda got peckish on Fireworks Night. And who better to comfort you in your chihuahua bereavement than someone who will save each of his thirty beats per minute for you? Not to mention that elephant societies are matriarchal. This man will not be threatened by a powerful woman. Career girls, rejoice!

But maybe you’re not convinced. To win you over to Party Pachyderm, Encyclopedia Britannica and I have collected a few more elephant facts that are going to knock your hoof warmers off. Read on for more delightful details about the Stud of the Serengeti.

1. Forgot the snacks on the counter? No problem! Your date has a handy dandy trunk, or proboscis, a hybrid upper lip and nose unique to members of Proboscidea, a group that used to count more than 160 species (including mastodons) as members. With a load capacity of 250 kg, your squeeze can grab the crisps, drinks, and even the kitchen table while you recline on the sofa.

Elephant Trunk (Photo: Eco Images. Britannica Images)

2. Need to fell a tree on your property during spring clean-up? Lucky for you, elephants have been used as draft animals in Asia for centuries. Your pachyderm partner can uproot and carry off that endangered heirloom chestnut before you’ve even had time to water the perennials.

3. Tired of waiting for the bathroom? Your elephant love will never keep you idling outside the loo on a busy morning. Mature elephants have only four permanent teeth. Brushing and flossing is complete before you can say “Tusk-Whitening Toothpaste.” Speaking of tusks, talk about some useful enlarged incisor teeth! In addition to protecting the trunk, tusks help elephants dig water holes, lift objects, gather food, and strip bark from trees. And you’ll never feel afraid in that dodgy biker bar with your elephant by your side, as tusks are also super useful for defense.

African Elephant Skull with two visible teeth. (Grant Museum, Z764)

4. Wondering if he’ll remember your anniversary? Well, ladies, the adage is true: an elephant never forgets. How else would groups manage seasonal migrations to food and water? If that elephant can remember the location of water sources along lengthy migration routes, he’ll never buy tickets for the footie on your nine-month anniversary and then try and fob you off with an Arsenal beer cozy.

So next time you’re tearing your fur out waiting for a text from Mr. “You’re-such-a-pretty-prey-animal-you-make-me-want-to-go-vegan,” take a glance across the watering hole to that bulky bloke consuming his required 100 litres per day. You might just be looking at the elephant love of your life.

Myths in the Museum: The Dugong and the Mermaid

By Jen Datiles, on 21 July 2018

There’s a 2.7-meter-long skeleton of a big underwater creature in the Grant Museum of Zoology, right when you enter the main room. On my first Saturday shift as a PhD museum engager, a 7-year-old boy stopped to point and ask his mom what this monster was, and why it had hands. The mom glanced at the display label, read its name, DUGONG, and then stopped and looked at me — what on earth was this note about this animal starting the myth of mermaids? Was it for real?

The dugong skeleton making waves (Grant Museum, Z33)

As Rita Dal Martello has written on our blog before, dugongs and manatees both belong to the animal genus Sirenia, and share the common name ‘sea cow’. The mammary glands of females in the Sirenia genus are located on their upper bodies near their armpits, which are likely to have contributed to the reported ‘mermaid’ sightings of explorers and sailors. While manatees can be found in estuarine and fresh waters, dugongs are strictly marine mammals. They also possess a dolphin fluke-like tail. Dugongs are slimmer than their cousins, but this is relative — they still can grow to 3 meters in length and weigh up to a whopping 1000 kg! It’s not surprising, then, that sailors spotted these animals from their ship’s deck. And mistaking them for beautiful humanlike creatures is not entirely far-fetched… when one considers these men could have been at sea for years at a time and knew every tall tale of fantastical ocean creatures in the book.

The myth of humanlike water spirits has perpetuated over the centuries. The first depiction of a half human-half fish creature is thought to be of the Babylonian water god Oannes as far back as 5000 BCE. The ancient Greek sirens, which originally were described with human heads on birds’ bodies, have also often been portrayed with fishtails. Pliny the Elder dedicated an entire chapter of his 1st century book The Natural History to write on the forms of tritons and nereids, describing that “in them, the portion of the body that resembles the human figure is still rough all over with scales.” In the pacific island nation of Palau, where a 3,000-year-old cave drawing of dugongs was found, legends of young women transforming into sea creatures have been passed down over the years; the word dugong, in fact, derives from Malay for ‘lady of the sea’. Christopher Columbus reported seeing mermaids near Haiti in 1493, and the English explorer Henry Hudson (namesake of New York’s Hudson River) gave a vivid description of the mermaid his crew apparently saw off the coast of Greenland in 1608:

“From the navill upward her backe and breasts were like a woman’s,
as they say they saw her, but her body as big as one of us. Her
skin very white, and long haire hanging downe behind of colour
blacke. In her going downe they saw her tayle, which was like the
tayle of a porposse, and speckled like a macrell.”

An 1817 coloured engraving of mermaids. (Credit: Wellcome Collection)

Captain Hailborne at St. Johns Newfoundland, from Newe Welt und Americanische Historian by Ludwig Gottfried, 1655. (Credit: The Mariners’ Museum)

In the 18th and 19th centuries, mermaid specimens held a particular grip on Western popular imagination. The hype began when several astonishingly realistic mermaid ‘specimens’ from Asia — primarily from Japan — made their way to Europe during Japan’s isolation policy under the Tokugawa shogunate. When this ended in 1854, these ningyo (which translates to ‘man-fish’), began to circulate as objects of good fortune, supernatural potency, and — perhaps above all — as a means to spark the curiosity of the public. Mermaids were sought after by collectors and showmen alike to draw crowds, as P.T. Barnum famously did with the ‘Feejee Mermaid’.

A Mermaid by John Waterhouse, 1900. (Credit: Royal Academy)

The “mermaid” from the Horniman Museum. (Photo: Heini Schneebeli)

Henry Wellcome (1853-1936), whose massive collection has been distributed over the years to various museums including our own Petrie Museum of Egyptian Archaeology, saw mermaids worth purchasing for their anthropological value; his two specimens are now housed in the Science Museum over in South Kensington, and in the Buxton Museum. Even the British Museum down the road boasts having its own mermaid. And these ‘Japanese mermaids’ continue to captivate our interest into the present day, not only out of curiosity but for science and conservation studies; researchers at the nearby Wellcome Collection recently investigated what two of these cleverly constructed specimens (long assumed to be a monkey head sewn to a fish body) are actually made of. The answer, it turns out, is stuffed papier-mache, wire, fish teeth, scales, carved bone and wood!

So next time you’re at the Grant Museum, take a look at the dugong skeleton. It may not look like it now, but just think of how this creature inspired sailors, shamans, and showmen to perpetuate myths of mermaids across the world, and over hundreds of years!

 

Not a mermaid. (Photo: Julien Willem)

Additional Reading:

Viscardi P, Hollinshead A, MacFarlane R, Moffatt J, 2014. Mermaids Uncovered. Journal of Museum Ethnography, (27): 98-116.

 

What is the relationship between frogs and fertility?

By Hannah B Page, on 10 July 2018

During my first few weeks as a student engager I began to notice the presence of frogs… everywhere. I saw them in various forms and objects in the Petrie Museum, and found frog and other amphibious specimens in the Grant Museum. The Surinam toad quickly became one of my favourite objects to show visitors—the female stores her eggs in her back, and they then burst through the skin when fertilised (Fig 1.). As you can imagine, when you tell people this, you get a mixed response. I took this all as a sign and decided I should do a bit of splashing around in the amphibian research pool and dedicate my first blog post to them.

Fig 1 Surinam Toad with emergent young (Grant Museum W332)

What became immediately obvious when I started to do some digging is just how common frogs are in cultural and religious belief systems. Frogs are used as characters in folk law and in fairy tales—just think of the frog prince in the Grimm stories—but I discovered that their use in religion and culture goes back much, much further. Both the ancient Egyptians and the Mesopotamians saw the frog as a symbol of fertility and life giving. This connection is obvious when you understand the importance these past civilisations gave to the rivers that flowed through their lands. The Nile, Tigris and Euphrates rivers are hailed as the facilitators of the fertile lands that made the development of the first major cities and the centralised hierarchical societies that lived there possible. So the frog, as a watery symbol of the life-giving waters, was then depicted in reliefs, sculpture and objects. One such object is a beautifully crafted, smooth limestone frog in the Petrie Museum (Fig. 2). In fact, frogs are such a strong and consistent symbol in ancient Egyptian culture that they are found depicted in important and specialist objects from the predynastic Naqada periods to the Roman period—some 4,500 years.

Fig 2 Limestone frog from Meroe in the (UCL Petrie Museum, UC.43984)

The Egyptians even depicted a goddess, Haqet, in the image of a frog. Unsurprisingly Haqet is the goddess of fertility and is often depicted either as a frog or in human form with the head of a frog. Amulets were then fashioned in the shape of frogs/Haqet, and were worn, providing fertility to the wearer.

Frogs have also been the subjects of art in other areas of the world as well, for example for the Moche culture of Peru (Fig. 3). The frog species found in the Amazon basin are the most numerous and some of the most deadly, including the poison dart frog who has enough deadly toxin to kill between ten and twenty grown people. Interestingly enough, in Moche society they were also associated with fertility and growth, but with their toxicity (and sometimes hallucinogenic quality), it is thought that their symbolic meaning stretches far beyond this interpretation.

Fig 3 Moche Frog stirrup spout bottle (The Metropolitan Museum of Art, 1992.60.8)

However in Europe, frogs and toads haven’t always been seen in such a positive light. The prince in the frog prince was cursed and turned into a frog as punishment, and in the epic biblical poem Paradise Lost, John Milton depicts Satan as a toad poisoning Eve.

So, their social and symbolic importance is well recorded, but what about their biological history? For this I interrogated the case in the Grant Museum dedicated to them. Frogs and toads it seems started life in the Triassic period, some 240 million years ago. The museum even has a cast of an early German species (Palaeobatrachus) that lived around 130-5 million years ago. What is also striking about the frog is its wide native distribution across the globe, from Europe, to the Americas, Africa to Australasia. So it is unsurprising that these springy species have such an important and consistent cultural presence worldwide.

Finally in my research I discovered that the study of the relationship between human culture and amphibians even has a name: ethnoherpetology. Clearly we have a long and intimate history with our croaky friends.

So next time you’re close by, why not hop into the Grant or the Petrie Museum to see how many frogs you can find?

The Imperial Gentleman of China

By Carolyn Thompson, on 3 July 2018

I am a primatologist; that is, a scientist who studies the behaviour, abundance and conservation status of monkeys, lemurs and apes. My specialty area and the focus of my PhD research here at University College London, is the plight of the gibbons, the smallest of the apes.

The Skywalker Hoolock gibbon (Hoolock tianxing). Photograph taken on Carolyn Thompson’s recent field trip to China. (Photo credit: Carolyn Thompson)

Gibbons are often forgotten in the shadow of their great cousins — the orangutans, chimpanzees, bonobos and gorillas — receiving less funding, as well as research and media attention. This is very unfortunate seeing as 19 of the 20 species are on the brink of extinction. The Hainan gibbon, for example, is the world’s rarest primate with a mere 26 individuals making up their entire global population.

I am always thrilled therefore to see media articles raising some much needed gibbon awareness, even if the news story doesn’t always paint us humans in the best light.

In 2004, one of my supervisors from the Zoological Society of London, stumbled across a gibbon skull inside a tomb in Xi’an, Shaanxi Province, China. The skull is believed to be ca. 2,200-2,300 years old and the potential property of Lady Xia, the grandmother of China’s first emperor, Qin Shihuang, who is famous for his striking terracotta army. Inside this ancient tomb was a whole menagerie of other animal skeletons including a crane, bear and a leopard — yet another example of human-animal relationships that have dated back millennia.

The skull of Junzi imperialis. (Photo credit: Samuel Turvey).

Although this exciting discovery could tell us a lot about our evolutionary shared ancestry with gibbon species, there are still many unanswered questions. We are unsure if the skull, now said to belong to Junzi imperalis (meaning the ‘imperial man of virtue’ due to the strong historical relationship between humans and gibbons in Chinese culture) is in fact a new species and where it came from. There are strong indicators, however, suggesting that this potentially new species of gibbon could be the first ape to have vanished off the face of the earth due to human pressures. Now extinct, we need to look at our current impact on the planet to ensure we don’t do the same with our other cousins.

Part of my PhD research examines the relationship between humans and animals, especially amongst local communities found in gibbon habitat regions. This intrigue, along with my love of mingling with the public, led me to my new role as a Student Engager in the UCL museums. For example, the Ancient Egyptians also had a strong connection with animals which I hope to explore over the coming months in the UCL Petrie Museum, and the Grant Museum of Zoology also has a couple of gibbon skeletons hanging around. Come and see for yourself!

In the meantime, keep your eyes peeled for my upcoming blogs on Twitter: @gibbonresearch and @ResearchEngager

Question of the Week: Why are sea sponges considered animals?

By Sarah M Gibbs, on 29 May 2018

By Sarah Gibbs

In that big comparative anatomy lecture hall in the sky, Robert Grant, founder of UCL’s Grant Museum of Zoology, must be smiling. This week’s featured question focuses on Grant’s favourite animal: the sea sponge. Grant’s work definitively proved that sponges are animals, not plants or simple celled organisms.

So, why is a sea sponge more closely related to a dog that a cactus? Read on to find out!

lue Barrel Sponge (Scientific American; Creative Commons Chris Coccaro)

The ever-sage Encyclopedia Britannica informs us that early naturalists classed sponges as plants because, you know, they lack organs, don’t move, and often have branches. Understandable, to be sure. In the eighteenth century, however, scientists began to notice animal characteristics of sponges, including the changes in diameter of their central cavity, and their creation of distinct water currents. Zoologists imagined that sponges occupied an isolated position in the animal kingdom, but molecular testing has since proved that sponges and more complex animals (like humans) developed from a common ancestor; sponges also possess many of the qualities biologists use to distinguish people from plants. For example, bodily composition: the elastic skeletons of sponges are made from collagen, the same protein found in human tendons and skin. Prevailing theories suggest that sponges are early animals which produced no subsequent evolutionary line.

The Venus Flower Basket Sponge (Scientific American; Creative Commons Ryan Somma)

The folks over at Scientific American note that sponges’ specialized cells differentiate them from multicellular protists, creatures which are not animals, plants, or fungus, and which form no tissues. It is the thinness of the sponge body and the fact that its cells are exposed to circulating water—which supplies food and oxygen, and removes waste—that make organs unnecessary. Sponges may have been the first multicellular animals. Multicellularity (which means that cells adhere to one another, communicate, are mutually dependent for survival, and specialize to perform different tasks) is the key to producing more complex organisms. Scientists speculate that sponges emerged, flexing their multicellular muscles*, at least 543 million years ago (*as sponges lack arms, they are sadly ineligible for body building contests). According to Scientific American, sponges were the first filter feeders, tiny Brita jugs of the sea** (**mixed metaphor alert).

So, sponges are in fact the original animal hipster; they were multicellular before it was cool. Let’s close with a few fun sponge facts.

Absorbing (!) Facts:

  1. Sponges can range in height from less than one centimeter to two metres tall.
  2. Most sponges are hermaphroditic (male and female cells exist in one animal) and reproduce sexually by releasing spermatozoan into the water current to be carried to other sponges, where they interact with eggs. Sponges can also reproduce asexually.
  3. Some deep-water sponges are carnivorous. Animals like the ping-pong tree sponge lie in wait for small crustaceans and other hapless sea dwellers to alight on their branches, the hook-like spicules on which prevent escape. Digestive cells migrate to the site of capture and the feast begins. Bet you’ll never look at a loofah the same way again.

 

Sources:

Frazer, Jennifer. “Sponges: The Original Animal House.” Scientific American, 17 Nov. 2011, https://blogs.scientificamerican.com/artful-amoeba/sponges-the-original-animal-house/

Sarà, Michele. “Sponge.” Encyclopedia Britannica. Britannica Academic, Britannica Digital Learning, https://academic-eb-com.libproxy.ucl.ac.uk/levels/collegiate/article/sponge/110257

Question of the Week: Why do box jellyfish have eyes?

By Kyle Lee-Crossett, on 10 May 2018

If you meet me during one of my shifts as a PhD Student Engager in the Grant Museum, you’ll find me next to the Micrarium, facing a case packed full of jellyfish and their ghostly relatives. I’ve never had an interest in jellyfish before, but hours and hours of staring at them over the time I’ve been an Engager has inspired my admiration (as well as a previous blog post).

Box jellyfish specimen at the Grant Museum, photo by author.

In recent weeks, I’ve had a number of visitors ask me about box jellyfish eyes, because it’s surprising to find out that something which often looks and moves like a floating plastic bag has eyes. And not just one or two eyes, but 24 in total. Their eyes are bundled into four structures called rhopalia, which sit around the bottom of its bell. Two of the eye types have the capability to form images, while the other two types help with swimming navigation, avoiding obstacles, and responding to light. Fun fact: Box jellyfish can regenerate their eye bundles (rhopalia) in as quickly as two weeks’ time.

On the specimen in the Grant Museum, you can only see two of it’s eyes because it’s been carefully bisected to reveal its internal anatomy.

Grant Museum specimen with eyes highlighted by author.

Like other jellies, box jellyfish have no brain, perceiving the world only through their nervous systems. Most jellyfish catch their prey without having either brains or eyes, just by floating transparently through the sea until prey run into their tentacles. So, our question should actually be: why do box jellyfish even need eyes?

There are at two main possibilities:

1)  Habitat: Unlike most jellies, which live on the open sea, box jellyfish tend to live in shallow water, which has many obstacles. Scientists have shown that box jellies near Puerto Rico can navigate around the dense mangrove swamps where they live, and also make sure that they don’t drift away to where there is less prey. Their upper lens eye can actually peer through the water’s surface to navigate from landmarks above the water, and perhaps celestial ones as well! Some scientists think these kinds of jellies actively hunt rather than passively encounter prey.

2) Reproduction: Among jellyfish, box jellies also have unusual mating practices, involving the precise transfer of sperm, which might involve the use of their complex eyes to identify mates.

Many things about jellyfish biology and behaviour are still a mystery to scientists, so keep a lookout for ongoing discoveries.

 

Bonus fact: box jellyfish also need to rest their eyes

Scientists have only recently discovered that jellyfish appear to sleep at night—an activity usually only associated with vertebrates. Some reasons why they might do this include is because of their reliance on vision for hunting (they don’t see well enough to hunt in the dark) or because they jellies simply need to take a break from the neural processing their eyes require.

 

 

Of Gastropods and Glass: The Grant Museum’s Blaschka Models of Invertebrates

By Hannah L Wills, on 24 April 2018

This week it’s time for another of my favourite objects from the UCL museums, today from the collections of the Grant Museum of Zoology. Displayed in a case near the front of the museum is a collection of extraordinary objects. At first glance, these objects appear somewhat otherworldly; their lightly transparent and almost twinkling surfaces captured my attention from my very first visit. They are, of course, the Grant Museum’s collection of glass models of invertebrates, a collection that includes jellyfish, sea anemones, gastropods, and sea cucumbers, produced at the end of the nineteenth century by the Blaschkas, a renowned family of Czech jewellers.

Limax arborum (tree slug). Blaschka glass model of a white slug, (P202). Image credit: Grant Museum.

Actinia equina (beadlet anemone). Blaschka model of a beadlet anemone. Red/orange body with white beadlets. The tentacles are transparent. On a black wooden base, under a glass dome, (C373). Image credit: Grant Museum.

 

The Blaschka family

The models in the museum’s collection were produced by Leopold and his son Rudolph Blaschka in the late 1800s, and may have been ordered by E. Ray Lankester during his time at UCL as professor of zoology.[i] Leopold Blaschka was born in 1822 in Northern Bohemia (today part of Czechia), in Aicha, a village known for its glasswork and decorative crafts.[ii] The Blaschka family specialised in producing jewellery using a range of materials, including glass, metal, and semi-precious stones. During his career, Leopold developed an interest in natural history, and began producing and selling models of invertebrates in the mid-1860s. The models were created using glass, wire, glue and paint, and occasionally incorporated parts of once-living creatures, including snail shells (see below).[iii] Today, Blaschka invertebrate models can be found in museums all over the world. The Harvard Museum of Natural History also holds a collection of glass flowers created by the Blaschkas, commissioned by the university in 1890.[iv]

Arianta arbustorum (copse snail). Blaschka glass model, (P196). Image credit: Grant Museum.

 

Why make specimens out of glass?

Passing the collection of models for the first time, a visitor to the Grant Museum could be forgiven for mistaking these models for specimens that were once alive. In light of the museum’s other displays, which feature real animals preserved using a variety of methods, one might wonder why artificial specimens, such as the Blaschka models, should be on display in a museum of natural history. While some creatures, such as mammals, birds, and fish, are easily preserved using methods of taxidermy, flowers and the softer bodies of invertebrates pose specific challenges in terms of their preservation. Putting these specimens into alcohol causes them to lose their shape and colour.[v] By creating models out of glass and other materials, it is possible to depict the vibrant colours and forms of the original specimens, allowing these creatures to be preserved and studied.

Art, Science, and ‘Jokes of Nature’

Former student engager Niall Sreenan has mused on the nature of the Blaschka models as artificial creations that occupy an ambiguous realm between nature and art.[vi] As a historian of science, I am fascinated by this interplay, particularly as it relates to the practice of natural history and the display of specimens. The relationship between art, nature, and science held great significance to the practice of natural history in sixteenth and seventeenth-century Europe. As the historian Paula Findlen has noted, collectors of natural specimens in the Early Modern period were fascinated by the idea that Nature, as a creative force who produced all the objects and creatures in the world, sported or played in her work by producing ‘jokes of nature’.[vii] Such ‘jokes of nature’ incorporated instances where natural objects appeared to ‘mimic’ human artifice, as seen in unusual fossils, geometric crystals, or in stones which appeared to have pictures implanted within them.[viii] ‘Jokes of nature’ were connected to science through the idea that man might match nature using art. Artificial creations and human imitations of natural forms were thought to mimic these jokes in a way that was central to natural philosophers’ understanding of the world.[ix]

Though produced over a century later, the Blaschka glass models call to mind this ambiguous division between human artifice and natural object. As models of difficult-to-preserve specimens, they allow visitors to understand what these creatures look like. On the other hand, they draw attention to human ingenuity and skill in the way they artfully capture the look of organic specimens.

Sea cucumber (female). Blaschka glass model in a cylindrical specimen jar, (S73). Image credit: Grant Museum.

 

The end of a craft

In 1895, Leopold Blaschka died. When his son retired in 1938 with no apprentices left at the firm, the Blaschka family business closed.[x] The skills used to produce the models died with the Blaschka family, and their work has not been repeated since.[xi] The models in the Grant Museum stand as a remarkable testament to unique craftsmanship and skills now lost.

Though models are no longer produced using the techniques once used by the Blaschka family, the relationship between art and natural history continues to fascinate contemporary artists. Grant Museum Manager Jack Ashby has recently written about the ways in which artists explore and reference the methods of natural history, and the treatment of both living and preserved animal specimens on display.[xii] Exploring the intersection of natural history and art, whether in the creation of model specimens or in the interrogation of the practices of natural history, can prompt us to question the ways in which natural and man-made objects are encountered in museums, and the way we understand an object’s (and our own) relationship with the natural world.

 

 

References

[i] ‘Blaschka Glass Model Invertebrates’, UCL Grant Museum, https://www.ucl.ac.uk/culture/grant-museum-zoology/blaschka-glass-models-invertebrates [Accessed 23 April 2018].

[ii] ‘Blaschka Models’, National Museums Scotland, https://www.nms.ac.uk/explore-our-collections/stories/natural-world/blaschka-models/ [Accessed 23 April 2018].

[iii] Ibid.

[iv] Ibid.

[v] ‘Blaschka Models’, National Museums Scotland, https://www.nms.ac.uk/explore-our-collections/stories/natural-world/blaschka-models/ [Accessed 23 April 2018].

[vi] Niall Sreenan, ‘”Strange Creatures” – Reflections – Part One’, 25 June 2015, https://blogs.ucl.ac.uk/researchers-in-museums/2015/06/25/strange-creatures-reflections-part-one/ [Accessed 23 April 2018].

[vii] Paula Findlen, “Jokes of Nature and Jokes of Knowledge: The Playfulness of Scientific Discourse in Early Modern Europe,” Renaissance Quarterly 43, no. 2 (1990): 292-96.

[viii] Ibid., 297-98.

[ix] Ibid.

[x] ‘Blaschka Models’, National Museums Scotland, https://www.nms.ac.uk/explore-our-collections/stories/natural-world/blaschka-models/ [Accessed 23 April 2018].

[xi] ‘Blaschka Glass Model Invertebrates’, UCL Grant Museum, https://www.ucl.ac.uk/culture/grant-museum-zoology/blaschka-glass-models-invertebrates [Accessed 23 April 2018].

[xii] Jack Ashby, ‘When Art Recreates the Workings of Natural History it can Stimulate Curiosity and Emotion’, 19 April 2018, https://natsca.blog/2018/04/19/when-art-recreates-the-workings-of-natural-history-it-can-stimulate-curiosity-and-emotion/ [Accessed 23 April 2018].

I spy with my little eye… Micrarium Top 5

By Kyle Lee-Crossett, on 9 January 2018

Want a tour through the Grant Museum’s iconic display of the tiny creatures that populate our world? Well unfortunately, it’s much too small for that! However, here I’ll tell you about five of my favourite slides to be on the lookout for when you visit.

The Micrarium. Photo by author.

The Micrarium’s floor-to-ceiling lightboxes illuminate 2323 microscope slides featuring insects, sea creatures, and more, with another 252 lantern slides underneath. While this sounds like a lot of slides, it’s only around 10% of what the museum holds. Natural history museums often find it difficult to display their slide collections, but the diminutive creatures often featured on them make up most of our planet’s biodiversity.

I start most of my conversations with visitors during Student Engager shifts here – the Micrarium provides a clear illustration of my PhD research about how challenging aspects of diversity (of all kinds) are integrated into existing collections. It’s also an ideal place within the museum to try to pause people in the flow of their visit – it’s hard to resist stopping to snap a selfie or two.

Selfie by author.

The soft glow of the Micrarium’s backlit walls often draws people into the space without realising the enormity (or tininess!) of what they’re looking at. Over time, I’ve cultivated a number of favourites that I point out  in order to share the variety, strangeness, and poetry of the individual slides.

Small and mighty

‘Stomatopoda “Erichtheus” larva’. Photo by author.

I was attracted to this slide because at first I thought it looked like a little flying squirrel. In actuality, it’s the larvae of a mantis shrimp.

The mantis shrimp is an incredible animal. To start, they have the most complex eyes of any animal, seeing a spectrum of colour ten times richer than our own. Its two ‘raptorial’ appendages can strike prey with an amount of force and speed, causing the water around them to boil and producing shockwaves and light that stun, smash and generally decimate their prey.

For more, check out this comic by The Oatmeal that illustrates just how impressive mantis shrimp are.

‘and toe of frog, wool of bat, and tongue of dog’

‘Eye of beetle’. Photo by author.

This is one of my favourite labels in the collection – was a zoologist also dabbling in witchcraft ingredients?  Probably not. But, I’d love to know what the slide was originally used for.

The slide itself also looks unusual due to its decorative paper wrapping. These wrappings were common to slides from the mid-19th century, which were produced and sold by slide preparers for others to study.

Many of the slides in the Micrarium were for teaching students who could check out slides like library books. So, perhaps it illustrated some general principles about beetle eyes rather than being used for specialist research.

Cat and Mouse

Fetal cat head (L). Embryonic mouse head (R). Photo by author.

One of the secrets of the Micrarium is that there are bits of larger animals hidden among all of the tiny ones. I like how the mice look surprisingly cheerful, all things considered. Bonus: see if you can also find the fetal cat paws!

Seeing stars

‘OPHIUROIDEA Amphiura elegens’. Photo by author.

This is a young brittle star, which in the largest species can have arms extending out to 60cm. Brittle stars are a distinct group from starfish; most tend to live in much deeper depths than starfish venture. They also move much faster than starfish, and their scientific name ‘Ophiuroidea’, refers to the slithery, snake-like way their arms move.

This slide can be found at child height, and it’s nice to show kids something they’re likely to recognise.

And finally:

Have you seen the bees’ tongue?

‘Apis (Latin for bee) tongue’ Photo by author.

Showing visitors this slide of the bee’s tongue almost always elicits surprise and fascination. Surprise at the seemingly strange choice to look at just the tongue of something so small and fascination at how complex it is.

We don’t normally think of insects having something so animal-sounding as a tongue (more like stabby spear bits to sting or bite us with!). But, bee tongues are sensitive and impressive tools: scientists have observed bee tongues rapidly evolving alongside climate change.

Good luck finding these…or your own Top 5! Share any of your favourites in the comments.

The Grant Museum blog did a similar post five years ago when the Micrarium opened. These don’t overalp with my Top 5 (which is easy to avoid when there are 2323 slides), so you should also check that out.