X Close

Researchers in Museums

Home

Engaging the public with research & collections

Menu

“When gibbons sing, I know it will rain”

By Carolyn Thompson, on 13 May 2019

I started writing this blog post whilst sat in a half-deserted village high up in the Gaoligong mountains in China. Occupied by only 10 remaining elders who refused to leave their traditional lives behind, I had the privilege of staying here and immersing myself into daily life.

Gaoligong mountain village, Yunnan Province, China. © Carolyn Thompson

I am seated by myself as the morning sun blinds me as it peeps out from over the moss-covered tiled roofs. Two chickens are currently sneaking past me into the kitchen to morbidly watch their duck cousin be prepared for breakfast. They scream as my host shoos them away flapping her arms wildly.

The houses date back 50+ years and are made from old wood and bamboo harvested from the forest in the days before the nearby reserve was established. Mules are found on the ground floor of these dwellings with humans roosting above. As a result, night-time can be a very noisy affair!

I also experienced a huge storm at 3 am. I’ve slept through many tropical storms when I lived and worked in Indonesian Borneo, but this was something else. The walls rattled as the rain beat against it and droplets started to seep through and trickle down. I thought the storm would snatch the flimsy roof right off, but I am glad to report that all houses — and mules — were still standing when I woke up.

Typical village dwelling. © Carolyn Thompson

My PhD is all about understanding local nature and wildlife values, comparing gibbon (small ape) knowledge, and investigating patterns of natural resource use. I have spent the past few months collecting social data in the form of structured interviews and small group discussions with local communities in both Hainan and Yunnan provinces. To get the most candid answers, it is important to immerse yourself into local life.

I have drunk countless cups of green tea and bottles of “bai jiu” (lethal Chinese wine) as a result, been dressed up as a local Hei Lisu person, braved eating the 100-year old egg, and scoffed so many sunflower seeds that I am ready to sprout!

Adult female Skywalker Hoolock gibbon (Hoolock tianxing). © Fan Peng-Fei.

Before embarking on my PhD journey, I was given an antique book by Robert Van Gulik, a Dutchman fascinated by gibbons and their significance in Chinese culture. Published in 1967, “The Gibbon in China” is a magical collection of poems, stories and paintings dating back to 200 BC. Rich in its content, I was overwhelmed with the stories about “lonely”, “sad-looking” yet “magical” apes who sing haunting and melancholy songs in the Chinese mountains.

Taoists (those that believe in ancient nature-worship regarding the flow of “ch’i” energy in all living things) talked about gibbons being superior to humans. Gibbons were often referred to as “gentlemen” as discussed in my previous blog. Everyone loves good manners — bring a gibbon to meet the parents and they won’t be disappointed due to their impeccable “table manners” (unlike their mischievous macaque monkey cousins), according to an 8th-Century poet, Liu Tsung-Yuan. Their intelligence, supposedly similar to humans, is also regularly mentioned, especially when needing to drink water from a nearby river. Forming a chain by holding hands, gibbons would lower themselves down to the river. One should therefore never “…place a gibbon (Yuan-yu) in a barred cage [as] how could he then show his clever skills?” (4th Century statesman, Ch’u-tz’u).

Forming a “Gibbon Chain”. Nineteenth Century. Sourced from Van Gulik’s 1967 essay on “Gibbons in China”.

Having read this book from cover to cover, I was pumped to record rich gibbon stories during my field season. I was therefore incredibly shocked and disappointed to learn that many traditional stories have not been passed down through the generations.

China is made up of 56 different ethnic groups, all of which used to be rich in culture and history with traditional dress and sigils (both of which are now rarely seen). I interviewed participants from six of these ethnic groups and asked them questions regarding  the importance of gibbons and forests in their local culture. Participants either didn’t understand the question or they would say there is no connection.

I was relieved to hear that a few elders still have a tale or two to tell, especially when it comes to gibbons being able to predict the weather:

“When gibbons sing, I know it will rain tomorrow.” (Anonymous).

An elder in Hainan province told me about how gibbons came to be which involved a naughty, lazy boy who was scolded with an iron on his butt. He then sprouted hair and turned into a gibbon.

I also had a surprisingly funny interview with a 70-something year old man who used to work in Burma harvesting wood to sell back to the Chinese. He spoke about his love of gibbons…to eat! We spent most of our interview crying with laughter as his opinion was so far from my own. He kept insisting that gibbons were incredibly ugly and thought I was crazy because I felt they had aesthetic value.

An on-looker listening in to an interview whilst looking at gibbon photographs. © Yu Yue Jiang.

“Look at their ugly faces!” He would yell. “Ah, they taste so good! Such a shame the government won’t let me hunt them anymore.”

It is important when I conduct these interviews that I remain impartial. At the end of the day, my PhD is all about finding sustainable solutions for both humans and gibbons alike.

My favourite moment was with an 87-year old woman who heard that a “laowai” (foreigner) was staying in the village. Having never left her village or seen a Caucasian woman before, we had a very special, informal moment bonding over gibbons and discussing what life was like during her youth — and what life was like now.

https://www.instagram.com/p/Bu6JKNjAWA8/

Although I am still at the start of my PhD journey, I have teamed up with a local non-governmental organisation called Cloud Mountain, who carry out conservation education activities. We hope to work together to reintroduce some of these traditional gibbon stories back into these villages. With only 28 Hainan gibbons, 150 Skywalker Hoolock gibbons and 110 Cao Vit gibbons remaining (my three study species), hopefully we can remind people of their magical, shared history and raise the profile of these forgotten apes before it is too late.

If you would like to follow my PhD journey, you can do so here: Personal blog, Twitter, Instagram. Or come and meet me in the UCL Grant or Petrie museums next month!

Colours of Ancient Egypt – Blue

By Anna Pokorska, on 16 October 2018

This is the second in the Colours of Ancient Egypt series; if you want to start at the beginning, click here

The colour blue has already featured in a couple of posts in this blog (e.g. check out Cerys Jones’ post on why the Common Kingfisher looks blue) but it seems impossible to me to discuss colour, especially in Ancient Egypt, and not start with blue. Arguably, blue has the most interesting history of all the colours, which can be attributed to the fact that it is not a colour that appears much in nature – that is, if you exclude large bodies of water and the sky, obviously. Naturally occurring materials which can be made into blue colourants are rare and the process of production is often very time-consuming. In Ancient Egypt, pigments for painting and ceramics were ground from precious minerals such as azurite and lapis lazuli; indigo, a textile dye now famous for its use in colouring jeans, was extracted from plants.

 

Left: two pieces of azurite (Petrie Museum, UC43790); Right: lapis lazuli (Image: Hannes Grobe)

However, all the above-mentioned colourants presented issues which limited their use. Azurite pigment is unstable in air and would eventually be transformed into its green counterpart, malachite. Lapis lazuli had to be imported from north-east Afghanistan (still the major source of the precious stone) and the extraction process would produce only small amounts of the purest colourant powder called ultramarine. Finally, indigo dyes can fade quickly when exposed to sunlight.

And yet it seems that the Ancient Egyptians attributed important meaning to the colour blue and it was used in many amulets and jewellery pieces such as the blue faience ring, lapis lazuli and gold bracelet or the serpent amulet from the Petrie Museum collection (below).

From left to right: blue faience ring with openwork bezel in form of uadjat eye (Petrie Museum, UC24520); lapis lazuli serpent amulet (UC38655); fragment of bracelet with alternative zig-zag lapis lazuli and gold beads (UC25970).

Therefore, the race to artificially produce a stable blue colourant began rather early. In fact, the earliest evidence of the first-known synthetic pigment, Egyptian blue, has been dated to the pre-dynastic period (ca. 3250 BC)[1]. It was a calcium copper silicate (or cuprorivaite) and – although the exact method of manufacture has been lost since the fall of the Roman Empire – we now know that it was made by heating a mixture of quartz sand, a copper compound, calcium carbonate and a small amount of an alkali such as natron, to temperatures over 800°C.

 

 

 

 

 

 

 

 

Fragment of fused Egyptian blue (Petrie Museum, UC25037).

This resulted in a bright blue pigment that proved very stable to the elements and was thus widely used well beyond Egypt. In fact, its presence has recently been discovered on the Parthenon Marbles in the British Museum due to its unusually strong photoluminescence, i.e. when the pigment is illuminated with red light (wavelengths around 630 nm) it emits near infrared radiation (with a max emission at 910 nm).

After its disappearance, artists and artisans had to make do with natural pigments and, being the most stable and brilliant, ultramarine became the coveted colourant once again. In fact, during the Renaissance, it is reputed to have been more expensive than gold and, as a result, often reserved for the pictorial representations of the Madonna and Christ. And so, the search for another replacement was back on. But it wasn’t until the early 1700s that another synthetic blue pigment was discovered, this time accidentally, by a paint maker from Berlin who, while attempting to make a red dye, unintentionally used blood-tainted potash in his recipe. The iron from the blood reacted with the other ingredients creating a distinctly blue compound, iron ferrocyanide, which would later be named Prussian blue. Naturally, other man-made blue pigments and dyes followed, including artificial ultramarine, indigo and phthalocyanine blues.

However, it wasn’t quite the end of the line for Egyptian blue, which was rediscovered and extensively studied in the 19th century by such great people as Sir Humphry Davy. And not only are we now able to reproduce the compound for artistic purposes, scientists are finding more and more surprising applications for its luminescence properties, such as biomedical analysis, telecommunications and (my personal favourite) security and crime detection[2].

References:

[1]  Lorelei H. Corcoran, “The Color Blue as an ‘Animator’ in Ancient Egyptian Art,” in Rachael B.Goldman, (Ed.), Essays in Global Color History, Interpreting the Ancient Spectrum (NJ, Gorgias Press, 2016), pp. 59-82.

[2] Benjamin Errington, Glen Lawson, Simon W. Lewis, Gregory D. Smith, ‘Micronised Egyptian blue pigment: A novel near-infrared luminescent fingerprint dusting powder’, Dyes and Pigments, vol 132, (2016), pp 310-315.

The Imperial Gentleman of China

By Carolyn Thompson, on 3 July 2018

I am a primatologist; that is, a scientist who studies the behaviour, abundance and conservation status of monkeys, lemurs and apes. My specialty area and the focus of my PhD research here at University College London, is the plight of the gibbons, the smallest of the apes.

The Skywalker Hoolock gibbon (Hoolock tianxing). Photograph taken on Carolyn Thompson’s recent field trip to China. (Photo credit: Carolyn Thompson)

Gibbons are often forgotten in the shadow of their great cousins — the orangutans, chimpanzees, bonobos and gorillas — receiving less funding, as well as research and media attention. This is very unfortunate seeing as 19 of the 20 species are on the brink of extinction. The Hainan gibbon, for example, is the world’s rarest primate with a mere 26 individuals making up their entire global population.

I am always thrilled therefore to see media articles raising some much needed gibbon awareness, even if the news story doesn’t always paint us humans in the best light.

In 2004, one of my supervisors from the Zoological Society of London, stumbled across a gibbon skull inside a tomb in Xi’an, Shaanxi Province, China. The skull is believed to be ca. 2,200-2,300 years old and the potential property of Lady Xia, the grandmother of China’s first emperor, Qin Shihuang, who is famous for his striking terracotta army. Inside this ancient tomb was a whole menagerie of other animal skeletons including a crane, bear and a leopard — yet another example of human-animal relationships that have dated back millennia.

The skull of Junzi imperialis. (Photo credit: Samuel Turvey).

Although this exciting discovery could tell us a lot about our evolutionary shared ancestry with gibbon species, there are still many unanswered questions. We are unsure if the skull, now said to belong to Junzi imperalis (meaning the ‘imperial man of virtue’ due to the strong historical relationship between humans and gibbons in Chinese culture) is in fact a new species and where it came from. There are strong indicators, however, suggesting that this potentially new species of gibbon could be the first ape to have vanished off the face of the earth due to human pressures. Now extinct, we need to look at our current impact on the planet to ensure we don’t do the same with our other cousins.

Part of my PhD research examines the relationship between humans and animals, especially amongst local communities found in gibbon habitat regions. This intrigue, along with my love of mingling with the public, led me to my new role as a Student Engager in the UCL museums. For example, the Ancient Egyptians also had a strong connection with animals which I hope to explore over the coming months in the UCL Petrie Museum, and the Grant Museum of Zoology also has a couple of gibbon skeletons hanging around. Come and see for yourself!

In the meantime, keep your eyes peeled for my upcoming blogs on Twitter: @gibbonresearch and @ResearchEngager

Of Gastropods and Glass: The Grant Museum’s Blaschka Models of Invertebrates

By Hannah L Wills, on 24 April 2018

This week it’s time for another of my favourite objects from the UCL museums, today from the collections of the Grant Museum of Zoology. Displayed in a case near the front of the museum is a collection of extraordinary objects. At first glance, these objects appear somewhat otherworldly; their lightly transparent and almost twinkling surfaces captured my attention from my very first visit. They are, of course, the Grant Museum’s collection of glass models of invertebrates, a collection that includes jellyfish, sea anemones, gastropods, and sea cucumbers, produced at the end of the nineteenth century by the Blaschkas, a renowned family of Czech jewellers.

Limax arborum (tree slug). Blaschka glass model of a white slug, (P202). Image credit: Grant Museum.

Actinia equina (beadlet anemone). Blaschka model of a beadlet anemone. Red/orange body with white beadlets. The tentacles are transparent. On a black wooden base, under a glass dome, (C373). Image credit: Grant Museum.

 

The Blaschka family

The models in the museum’s collection were produced by Leopold and his son Rudolph Blaschka in the late 1800s, and may have been ordered by E. Ray Lankester during his time at UCL as professor of zoology.[i] Leopold Blaschka was born in 1822 in Northern Bohemia (today part of Czechia), in Aicha, a village known for its glasswork and decorative crafts.[ii] The Blaschka family specialised in producing jewellery using a range of materials, including glass, metal, and semi-precious stones. During his career, Leopold developed an interest in natural history, and began producing and selling models of invertebrates in the mid-1860s. The models were created using glass, wire, glue and paint, and occasionally incorporated parts of once-living creatures, including snail shells (see below).[iii] Today, Blaschka invertebrate models can be found in museums all over the world. The Harvard Museum of Natural History also holds a collection of glass flowers created by the Blaschkas, commissioned by the university in 1890.[iv]

Arianta arbustorum (copse snail). Blaschka glass model, (P196). Image credit: Grant Museum.

 

Why make specimens out of glass?

Passing the collection of models for the first time, a visitor to the Grant Museum could be forgiven for mistaking these models for specimens that were once alive. In light of the museum’s other displays, which feature real animals preserved using a variety of methods, one might wonder why artificial specimens, such as the Blaschka models, should be on display in a museum of natural history. While some creatures, such as mammals, birds, and fish, are easily preserved using methods of taxidermy, flowers and the softer bodies of invertebrates pose specific challenges in terms of their preservation. Putting these specimens into alcohol causes them to lose their shape and colour.[v] By creating models out of glass and other materials, it is possible to depict the vibrant colours and forms of the original specimens, allowing these creatures to be preserved and studied.

Art, Science, and ‘Jokes of Nature’

Former student engager Niall Sreenan has mused on the nature of the Blaschka models as artificial creations that occupy an ambiguous realm between nature and art.[vi] As a historian of science, I am fascinated by this interplay, particularly as it relates to the practice of natural history and the display of specimens. The relationship between art, nature, and science held great significance to the practice of natural history in sixteenth and seventeenth-century Europe. As the historian Paula Findlen has noted, collectors of natural specimens in the Early Modern period were fascinated by the idea that Nature, as a creative force who produced all the objects and creatures in the world, sported or played in her work by producing ‘jokes of nature’.[vii] Such ‘jokes of nature’ incorporated instances where natural objects appeared to ‘mimic’ human artifice, as seen in unusual fossils, geometric crystals, or in stones which appeared to have pictures implanted within them.[viii] ‘Jokes of nature’ were connected to science through the idea that man might match nature using art. Artificial creations and human imitations of natural forms were thought to mimic these jokes in a way that was central to natural philosophers’ understanding of the world.[ix]

Though produced over a century later, the Blaschka glass models call to mind this ambiguous division between human artifice and natural object. As models of difficult-to-preserve specimens, they allow visitors to understand what these creatures look like. On the other hand, they draw attention to human ingenuity and skill in the way they artfully capture the look of organic specimens.

Sea cucumber (female). Blaschka glass model in a cylindrical specimen jar, (S73). Image credit: Grant Museum.

 

The end of a craft

In 1895, Leopold Blaschka died. When his son retired in 1938 with no apprentices left at the firm, the Blaschka family business closed.[x] The skills used to produce the models died with the Blaschka family, and their work has not been repeated since.[xi] The models in the Grant Museum stand as a remarkable testament to unique craftsmanship and skills now lost.

Though models are no longer produced using the techniques once used by the Blaschka family, the relationship between art and natural history continues to fascinate contemporary artists. Grant Museum Manager Jack Ashby has recently written about the ways in which artists explore and reference the methods of natural history, and the treatment of both living and preserved animal specimens on display.[xii] Exploring the intersection of natural history and art, whether in the creation of model specimens or in the interrogation of the practices of natural history, can prompt us to question the ways in which natural and man-made objects are encountered in museums, and the way we understand an object’s (and our own) relationship with the natural world.

 

 

References

[i] ‘Blaschka Glass Model Invertebrates’, UCL Grant Museum, https://www.ucl.ac.uk/culture/grant-museum-zoology/blaschka-glass-models-invertebrates [Accessed 23 April 2018].

[ii] ‘Blaschka Models’, National Museums Scotland, https://www.nms.ac.uk/explore-our-collections/stories/natural-world/blaschka-models/ [Accessed 23 April 2018].

[iii] Ibid.

[iv] Ibid.

[v] ‘Blaschka Models’, National Museums Scotland, https://www.nms.ac.uk/explore-our-collections/stories/natural-world/blaschka-models/ [Accessed 23 April 2018].

[vi] Niall Sreenan, ‘”Strange Creatures” – Reflections – Part One’, 25 June 2015, https://blogs.ucl.ac.uk/researchers-in-museums/2015/06/25/strange-creatures-reflections-part-one/ [Accessed 23 April 2018].

[vii] Paula Findlen, “Jokes of Nature and Jokes of Knowledge: The Playfulness of Scientific Discourse in Early Modern Europe,” Renaissance Quarterly 43, no. 2 (1990): 292-96.

[viii] Ibid., 297-98.

[ix] Ibid.

[x] ‘Blaschka Models’, National Museums Scotland, https://www.nms.ac.uk/explore-our-collections/stories/natural-world/blaschka-models/ [Accessed 23 April 2018].

[xi] ‘Blaschka Glass Model Invertebrates’, UCL Grant Museum, https://www.ucl.ac.uk/culture/grant-museum-zoology/blaschka-glass-models-invertebrates [Accessed 23 April 2018].

[xii] Jack Ashby, ‘When Art Recreates the Workings of Natural History it can Stimulate Curiosity and Emotion’, 19 April 2018, https://natsca.blog/2018/04/19/when-art-recreates-the-workings-of-natural-history-it-can-stimulate-curiosity-and-emotion/ [Accessed 23 April 2018].

A Fine Vintage: Grapes and Wine in Ancient Egypt

By Hannah L Wills, on 20 March 2018

Some of the best conversations I have with visitors in the UCL museums start with the question ‘what’s that?’. A couple of weeks ago, I was asked about an object by a visitor to the Petrie Museum of Egyptian Archaeology, as we stood in front of a case containing an array of small objects. The artefact in question was an oval-shaped sculpture with a point at one end, covered on its surface with a pattern of bubble-like protrusions, made from the pale blue ceramic faience. The case contained a number of similarly shaped objects, and a fired clay mould bearing similar bubble-like impressions.

UC795 and UC800, sculptures found in Amarna, Dynasty 18 (1549 BC – 1292 BC). Image credit: Petrie Museum.

UC1700, fired clay mould used in producing faience sculptures similar to those pictured above. Amarna, Late Dynasty 18. Image credit: Petrie Museum.

 

After looking them up on the museum’s online catalogue, we discovered that these small objects were depictions of bunches of grapes, produced using moulds like the one displayed in the case. Grape bunches can be found in a variety of objects in the Petrie Museum, in small sculptures like the ones above, and as part of other artefacts. One of the museum’s faience bead necklaces, likely worn by Tutankhamen’s father and described in a recent blog post, features no less than 83 small bunches of grapes among its beads. Other objects in the museum’s catalogue include fragments of plaster featuring painted designs that incorporate bunches of grapes and vines, from the same location and time period as both the grape sculptures and the bead necklace. My favourite grape-related object is a painted limestone statuette of a monkey, depicted happily devouring an enormous bunch of grapes.

UC1957, reconstructed bead necklace made from faience. The necklace features 83 bunches of grapes, and a variety of other forms, including petals, dates, mandrakes and palm-leaves. Amarna, Late Dynasty 18. Image credit: Petrie Museum.

UC026, painted limestone statuette of a monkey eating a bunch of grapes. Amarna, period of Akhenaten. Image credit: Petrie Museum.

 

Grape clusters like the sculptures above have been found during excavations at a number of New Kingdom sites in Egypt.[i] It has been suggested that grapes were seen as a symbol of royalty, with painted depictions of the fruits often used to decorate royal thrones and garden shrines.[ii] Grapes and vines, and the process of winemaking, also appear on the walls of New Kingdom tombs.[iii] In ancient Egypt, it was mainly the upper classes and royal families who consumed wine. It was also used as an offering to the gods by pharaohs and priests, as seen in depictions in temples from the New Kingdom period up to Greco-Roman times.[iv] As Anna Garnett, curator of the Petrie Museum, has noted, wine was stored in pottery vessels, known as amphorae (pictured below), and was often labelled with the wine’s location of origin and year of production, just as producers do today.[v]

Detail from facsimile reproduction of a wall mural in the tomb of Nakht at Thebes, ca. 1425–1350 BC, Dynasty 18. This fragment depicts the process of wine making. Norman de Garis Davies (1865–1941), Nakht and Family Fishing and Fowling, Tomb of Nakht, tempera on paper. Image credit: Wikimedia Commons.

UC32931, shard of an amphora featuring the text ‘Year 17, sweet wine of the domain of Sehetep-A[ten]’, Amarna, Late Dynasty 18. Image credit: Petrie Museum.

 

Maria Rosa Gausch Jané, a leading expert on wine and viticulture in ancient Egypt, has suggested that grapes were seen as a symbol of resurrection, and may also have been thought to play a role in the transfiguration process undertaken by kings as part of the journey into the afterlife.[vi] Supplies of red and white wine have been found in the burial chamber of Tutankhamun, symbolically positioned to aid in the various stages of the king’s transition to the afterlife.[vii]

Grapes had great significance in ancient Egyptian culture, in terms of their cultivation, consumption, and symbolism. Next time you visit the Petrie Museum, see how many references to grapes and wine you can spot!

 

References

[i] ‘Faience grapes from Amarna’, collections database, Y Ganoflan Eifftaidd / Egypt Centre, Swansea,  http://www.egypt.swan.ac.uk/the-collection-2/the-collection/w344a/ [Accessed 18 Mar 2018].

[ii] Ibid.

[iii] Ibid.

[iv] Maria Rosa Guasch Jané, ‘The Meaning of Wine in Egyptian Tombs: The Three Amphorae from Tutankhamun’s Burial Chamber’, Antiquity 85 (2011): 851-858, p. 855.

[v] Anna E Garnett, ‘Curating the Petrie Museum: Three Object Stories’, 26 Jul 2017, https://blogs.ucl.ac.uk/museums/2017/07/26/curating-the-petrie-museum-three-object-stories/#more-51323 [Accessed 18 Mar 2018].

[vi] Jané, ‘The Meaning of Wine’, pp. 855-856.

[vii] Ibid, p. 857.

Time and Astronomy in the Petrie Museum

By Hannah L Wills, on 9 February 2018

During a recent shift at the Petrie Museum of Egyptian Archaeology, I was asked by one visitor, ‘what’s your favourite object in the museum?’. As anyone who has visited the Petrie Museum will know, there is no shortage of fascinating objects on display, from the museum’s 12th dynasty pottery rat-trap, to the amazing Hawara mummy portraits (naming but two of my go-to favourites when showing visitors around the collection). However, the object I find most interesting within the museum’s collection is a small artefact found in one of the cabinets in the museum’s pottery room, in and amongst a group of objects dating from the Ottoman period (1517 – 1914 CE). The object is identified on its label as ‘UC4108 Wooden astrolabe with brass dial. Probably made for teaching purposes rather than use’. From the moment I first spotted the object I was intrigued. What exactly is an astrolabe, and how would it have been used?

Wooden Astrolabe (UC4108), displayed with its handwritten museum label (Image credit: Hannah Wills)

The Petrie Museum’s astrolabe (UC4108), displayed with a group of objects from the Ottoman Period (Image credit: Hannah Wills)

 

What is an astrolabe?

An astrolabe is a kind of scientific instrument, used to calculate the time and to make observations, such as the height of the Sun and stars with respect to the horizon or meridian.[i] In the Islamic world, astrolabes served an important function in determining prayer times, and the direction of Mecca.[ii] Such instruments date back to ancient times and were used to reveal how the sky looks from a specific place at a specific time. The face of the astrolabe features a map of the sky, with the celestial sphere mapped onto a flat surface. The instrument features moveable parts that allow the user to set date and time. When this is done, the face of the instrument represents the sky, allowing the user to solve astronomical problems visually.[iii]

Teaching astronomy 

Though many astrolabes used in the medieval period were made from either brass or iron, the Petrie Museum’s astrolabe is made from wood, with a brass dial, known as the ‘rete’ (in Arabic al-‘ankabūt), affixed to the top.[iv] The museum’s catalogue suggests that the object is ‘too crudely made for any practical purpose other than teaching’.[v] Historian Johannes Thomann notes that in the Islamic world from around the mid-eighth century onwards, the main function of the astrolabe was as a tool for teaching introductory astronomy, supported by texts written in an instructional style that explained the use of key astronomical instruments.[vi] The ‘crude’ finish of the Petrie Museum astrolabe, along with its size, would have made it imprecise, and ultimately unfit for carrying out practical calculations. The instrument might instead have been used for basic exercises to familiarise pupils with astronomy, and the process of making observations.

 

To find out more about how astrolabes work, you can watch this short TED talk, “Tom Wujec Demos the 13th-Century Astrolabe.” New York: TED, 2009.

 

Do you have a favourite object in any of the UCL museums? Tweet us @ResearchEngager or find us in the museums and tell us about it!

 

 

References:

[i] ‘Astrolabe’,  in Encyclopaedia Britannica, https://www.britannica.com/science/astrolabe-instrument [Accessed 8 Feb 2018].

[ii] Unit 4: Science and the Art of the Islamic World, in Maryam D. Ekhtiar and Claire Moore, Art of the Islamic World: A Resource for Educators, https://www.metmuseum.org/learn/educators/curriculum-resources/art-of-the-islamic-world [Accessed 8 Feb 2018], p. 94.

[iii] ‘The Astrolabe: An Instrument with a Past and Future’, http://www.astrolabes.org/ [Accessed 8 Feb 2018].

[iv] Sonja Brentjes and Robert G. Morrison ‘The Sciences in Islamic societies (750-1800)’, in Robert Irwin, ed. The New Cambridge History of Islam. Vol. 4. The New Cambridge History of Islam. Cambridge: Cambridge University Press, 2010, p. 596.

[v] UC4108 Wooden Astrolabe, Petrie Museum Online Catalogue, http://petriecat.museums.ucl.ac.uk/detail.aspx [Accessed 8 Feb 2018].

[vi] ‘Interviews with the Experts’, Charles Burnett interview with Johannes Thomann, Astrolabes in Medieval Jewish Culture, 5 March 2014, http://blogs.mhs.ox.ac.uk/hebrew-astrolabes/2014/03/05/interviews-experts/ [Accessed 8 Feb 2018].

Season’s (Philosophical) Feastings

By Hannah L Wills, on 13 December 2017

Christmas is a time for overindulgence, so let’s have some tales of eighteenth-century feasting, with a twist from the history of science.

In my research, I examine the diary of Charles Blagden (1748-1820), physician, natural philosopher, and secretary to London’s Royal Society. One of the things I’ve been most struck by in my work on Blagden’s diary is the ever-presence of food and feasting within the social and scientific worlds of the late eighteenth century. Blagden’s diary reveals a near-daily itinerary of dining engagements where politicians, fellows of the Royal Society, and members of London’s well-to-do gathered to discuss news, politics, and the latest developments in natural knowledge over a range of lavish and often exotic meals. 

Scientific gatherings and feasts

A typical day for Blagden in the year 1795 began with a trip to the London home of Sir Joseph Banks, president of the Royal Society, for breakfast. Though the diary gives little indication of the food on offer, it does reveal that at these gatherings participants discussed news, politics, and natural philosophy, all over breakfast. On some occasions, Blagden and Banks conducted experiments, as revealed in Blagden’s diary entry for 19 February 1795: ‘Breakfasted at Sir Joseph Banks’s. all civil: made some experiments on crystallisation of nitre’.[i] This experiment was one that investigated the properties of a key ingredient in the manufacture of saltpetre (potassium nitrate) used in the manufacture of explosives.

On Thursdays, before the weekly meetings of the Royal Society, Blagden attended the Royal Society Club, a dining club for fellows of the Society held at the Crown and Anchor Inn on the Strand. While meetings of the club were intended to be social, scientific matters were inevitably discussed while members feasted on a variety of foods.[ii] The Royal Society archives contain some of the menus from these meetings, which at a dinner held on 23 October 1783 included ‘A Turtle’, which had for several days before the dinner been allowed to roam at Banks’s London home, ‘Scate’ (the fish skate), ‘Harricot of Mutton’ (a mutton stew), ‘a Hare’, ‘another dish of Turtle’, ‘Potatoes’, ‘Cold Ribs of Lamb’, ‘Breast of Veal’, ‘Haddock’ and finally ‘more of the Turtle’.[iii]

Feasting as research

As well as being a convivial aid to the discussion of natural philosophical topics, eating was also a central part of investigating nature. At gatherings hosted by Banks, visitors indulged in the consumption of various plants and animals, many sourced from exotic locations. One entry in Blagden’s diary reveals a particular gathering during which guests enjoyed several nuts brought by the botanist Richard Molesworth, named in Blagden’s diary as ‘Buticosa’ and ‘Sawena’. Blagden described them as ‘both pleasant to eat; one a sort of buttery nut, the other larger & more like walnut’.[iv]

Such behaviour might seem eccentric and even dangerous to us depending on the kinds of exotic fare on offer. Banks was frequently targeted by contemporary satire with his ‘philosophical’ feasting caricatured in a sketch by the artist Thomas Rowlandson. In ‘The Fish Supper’ (below) we see Banks’s guests, possibly including Blagden, eagerly preparing to devour an alligator specimen, while Banks, on the right-hand side of the image, greedily gnaws on a snake.

Thomas Rowlandson, Sir Joseph Banks about to Eat an Alligator (‘The Fish Supper’), 1788, ink and watercolour on paper (Image credit: © Tate (2014), CC-BY-NC-ND 3.0 Unported)

 

Festive feasting, with a bang

Experiments combined with dining did on occasion produce dangerous results. For a final festive example, we turn to an anecdote of the earlier eighteenth century. On Christmas Day 1750, Blagden’s contemporary Benjamin Franklin conducted an ill-fated experiment in cooking a turkey. Though today perhaps best known as one of the founding fathers of America, Franklin was also a renowned natural philosopher, famed for his electrical experiments. In April 1749, Franklin wrote a letter detailing an experiment he intended to make where ‘A turkey is to be killed for our dinner by the electrical shock, and roasted by the electrical jack’.[v] Franklin repeated this experiment on Christmas Day the following year with disastrous results, describing it as:

an Experiment in Electricity that I desire never to repeat… I inadvertently took the whole [shock] thro’ my own Arms and Body… the flash was very great and the crack as loud as a Pistol; yet my Senses being instantly gone, I neither Saw the one nor heard the other’.[vi]

Franklin’s turkey cooking is definitely a dining experiment not to be tried at home!

 

 

References:

[i] Royal Society Library, Charles Blagden’s Diary Vol 3, entry dated 19 Feb 1795, f. 47r.

[ii] For more information on the dining clubs of the Royal Society, including its membership, see T. E. Allibone, The Royal Society and Its Dining Clubs (Oxford: Pergamon Press, 1976).

[iii] Ibid., 121.

[iv] Royal Society Library, Charles Blagden’s Diary Vol 3, entry dated 17 Oct 1795, f. 70v.

[v] Meredith Man, ‘Ben Franklin on Cooking Turkey… with Electricity’, blog post for the New York Public Library website, published on 24 Nov 2014.

[vi] Ronald Clark, Benjamin Franklin: A Biography (London: Weidenfeld and Nicholson, 1983), 76.

Question of the Week: What’s this Museum For?

By Hannah L Wills, on 19 October 2017

By Hannah Wills

 

 

A couple of weeks ago, whilst engaging in the Grant Museum, I started talking to some secondary school students on a group visit to the museum. During their visit, the students had been asked to think about a number of questions, one of which was “what is the purpose of this museum?” When asked by some of the students, I started by telling them a little about the history of the museum, why the collection had been assembled, and how visitors and members of UCL use the museum today. As we continued chatting, I started to think about the question in more detail. How did visitors experience the role of museums in the past? How do museums themselves understand their role in today’s world? What could museums be in the future? It was only during our discussion that I realised quite how big this question was, and it is one I have continued to think about since.

What are UCL museums for?

The Grant Museum, in a similar way to both the Petrie and Art Museums, was founded in 1828 as a teaching collection. Named after Robert Grant, the first professor of zoology and comparative anatomy at UCL, the collection was originally assembled in order to teach students. Today, the museum is the last surviving university zoological museum in London, and is still used as a teaching resource, alongside being a public museum. As well as finding classes of biology and zoology students in the museum, you’re also likely to encounter artists, historians and students from a variety of other disciplines, using the museum as a place to get inspiration and to encounter new ideas. Alongside their roles as spaces for teaching and learning, UCL museums are also places for conversation, comedy, film screenings and interactive workshops — a whole host of activities that might not have taken place when these museums were first created. As student engagers, we are part of this process, bringing our own research, from a variety of disciplines not all naturally associated with the content of each of the museums, into the museum space.

 

A Murder-Mystery Night at the Grant Museum (Image credit: Grant Museum / Matt Clayton)

A Murder-Mystery Night at the Grant Museum (Image credit: Grant Museum / Matt Clayton)

 

What was the role of museums in the past?

Taking a look at the seventeenth and eighteenth-century roots of the Ashmolean Museum in Oxford and the British Museum in London, it is possible to see how markedly the role and function of the museum has changed over time. These museums were originally only open to elite visitors. The 1697 statues of the Ashmolean Museum required that ‘Every Person’ wishing to see the museum pay ‘Six Pence… for the Space of One Hour’.[i] In its early days, the British Museum was only open to the public on weekdays at restricted times, effectively excluding anyone except the leisured upper classes from attending.[ii]

Another feature of these early museums was the ubiquity of the sense of touch within the visitor experience, as revealed in contemporary visitor accounts. The role of these early museums was to serve as a place for learning about objects and the world through sensory experience, something that, although present in museum activities including handling workshops, tactile displays, and projects such as ‘Heritage in Hospitals’, is not typically associated with the modern visitor experience. Zacharias Conrad von Uffenbach (1683-1784), a distinguished German collector, recorded his visit to Oxford in 1710, and his handling of a range of museum specimens. Of his interactions with a Turkish goat specimen, Uffenbach wrote, ‘it is very large, yellowish-white, with… crinkled hair… as soft as silk’.[iii] As Constance Classen has argued, the early museum experience resembled that of the private ‘house tour’, where the museum keeper, assuming the role of the ‘gracious host’, was expected to offer objects up to be touched, with the elite visitor showing polite and learned interest by handling the proffered objects.[iv]

Aristocratic visitors handle objects and books in a Dutch cabinet of curiosities, Levinus Vincent, Illustration from the book, Wondertooneel der Nature - a Cabinet of Curiosities or Wunderkammern in Holland. c. 1706-1715 (Image credit: Universities of Strasbourg)

Aristocratic visitors handle objects and books in a Dutch cabinet of curiosities, Levinus Vincent, Illustration from the book, Wondertooneel der Nature – a Cabinet of Curiosities or Wunderkammern in Holland. c. 1706-1715 (Image credit: Universities of Strasbourg)

 

How do museums think about their function today?

In understanding how museums think about their role in the present, it can be useful to examine the kind of language museums employ when describing visitor experiences. The British Museum regularly publishes exhibition evaluation reports on its website, detailing visitor attendance, identity, motivation and experience. These reports are fascinating, particularly in the way they classify different visitor types and motivations for visiting a museum. Visitor motivations are broken down into four categories: ‘Spiritual’, ‘Emotional’, ‘Intellectual’ and ‘Social’, with each connected to a different type of museum function.[v]

Those who are driven by spiritual motivations are described as seeing the museum as a Church — a place ‘to escape and recharge, food for the soul’. Those motivated by emotion are understood as searching for ‘Ambience, deep sensory and intellectual experience’, the role of the museum being described as akin to that of a spa. For the intellectually motivated, the museum’s role is conceptualised as that of an archive, a place to develop knowledge and conduct a ‘journey of discovery’. For social visitors, the museum is an attraction, an ‘enjoyable place to spend time’ where facilitates, services and welcoming staff improve the experience. Visitors are by no means homogenous, their unique needs and expectations varying between every visit they make, as the Museum’s surveys point out. Nevertheless, the language of these motivations reveals how museum professionals and evaluation experts envisage the role of the modern museum, a place which serves multiple functions in line with what a visitor might expect to gain from the time they spend there.

What will the museum of the future be like?

In an article published in Frieze magazine a couple of years ago, Sam Thorne, director of Nottingham Contemporary, invited a group of curators to share their visions on the future of museums. Responses ranged from the notion of the museum as a ‘necessary sanctuary for the freedom of ideas’, to more dystopian fears of increased corporate funding and the museum as a ‘business’.[vi] These ways of approaching the role of the museum are by no means exclusive; there are countless other ways that museums have been used, can be used, and may be used in the future. My thinking after the conversation I had in the Grant Museum focussed on my own research and experience with museums, but this is a discussion that can and should be had by everyone — those who work in museums, those who go to museums, and those who might never have visited a museum before.

 

What do you think a museum is for? Tweet us @ResearchEngager or come and find us in the UCL museums and carry on the discussion!

 

References:

[i] R. F. Ovenell, The Ashmolean Museum 1683-1894 (Oxford: Clarendon Press, 1986), 87.

[ii] Fiona Candlin has written on the class politics of early museums, in “Museums, Modernity and the Class Politics of Touching Objects,” in Touch in Museums: Policy and Practice in Object Handling, ed. Helen Chatterjee, et al. (Oxford: Berg, 2008).

[iii] Zacharias Konrad von Uffenbach, Oxford in 1710: From the Travels of Zacharias Conrad von Uffenbach, trans. W. H. Quarrell and W. J. C. Quarrell (Oxford: Blackwell, 1928), 28.

[iv] Constance Classen, “Touch in the Museum,” in The Book of Touch, ed. Constance Classen (Oxford Berg, 2005), 275.

[v] For this post I took a look at ‘More than mummies A summative report of Egypt: faith after the pharaohs at the British Museum May 2016’, Appendix A: Understanding motivations, 27.

[vi] Sam Thorne, “What is the Future of the Museum?” Frieze 175, (2015), accessed online.

Adventures in Eighteenth-century Papermaking

By Hannah L Wills, on 21 July 2017

By Hannah Wills

 

 

Earlier this summer, I gave a talk with some of the other engagers at our ‘Materials & Objects’ event at the UCL Art Museum. In preparing for the event, we were all challenged to think about the objects, materials, and physical ‘stuff’ that we work with on a daily basis. As I’ve written about before, my research focuses on the notebooks and diaries of a late eighteenth-century physician and natural philosopher, Charles Blagden (1748-1820), who served as secretary to the Royal Society. One of the things I’m interested in is how Blagden used his notebooks and diaries to keep track of his day-to-day activities, as well as the business of one of London’s major learned societies. Record keeping and note taking was a central part of Blagden’s life, and it’s owing to his impressive record keeping habit that there’s one material I handle in my research more than any other: eighteenth-century paper.

A selection of Blagden’s many notebooks, held at the Wellcome Library. (Image credit: Charles Blagden, L0068242 Lectures on chemistry, Wellcome Library, London. Wellcome Images, MSS 1219 - MSS1227. CC BY 4.0)

A selection of Blagden’s many notebooks, held at the Wellcome Library. (Image credit: Charles Blagden, L0068242 Lectures on chemistry, Wellcome Library, London. Wellcome Images, MSS 1219 – MSS1227. CC BY 4.0)

 

When I began preparing my talk for ‘Materials & Objects’, I started to think about how I might bring paper, a relatively mundane material, to life. My initial reading on the craft of papermaking told me that despite it being a 2000-year old process, making paper by hand has changed relatively little between then and now.[i] Out of curiosity, I decided to do an experiment, and to see if I could replicate some of the processes of eighteenth-century papermaking at home, in my kitchen.

The first stage in the papermaking process is to select the material from which the paper is going to be made. In the eighteenth century, this would typically have been cotton and linen rags. Towards the end of the century, shortages of rags, in part caused by an increased use of paper for printing, meant that makers began to experiment with other materials. In 1801, the very first book printed on recycled paper was published in London—that is, paper that had been printed on once before already.[ii]

Having selected the material, the next step is to break it down, making it into a pulp. When papermaking was first introduced in Europe in the twelfth century, rags were wetted, pressed into balls, and then left to ferment. After this, the rags were macerated in large water-powered stamping mills.[iii] In the eighteenth century, a beating engine, or a Hollander, was used to tear up the material, creating a wet pulp by circulating rags around a large tub with a cylinder fitted with cutting bars (see below).[iv] For my purposes, I found a kitchen blender worked well to break up scraps of used paper from my recycling bin at home, ready to make into new blank sheets.

(Left) Eighteenth-century illustration of a beating engine, from Diderot and d’Alembert’s Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol. 5, Paris, 1767. (Right) A kitchen blender achieves roughly the same effect, breaking up old used paper soaked in water to create a pulp. (Image credits: Left “Papermaking. Plate VIII" The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. Translated by Abigail Wendler Bainbridge. Ann Arbor: Michigan Publishing, University of Michigan Library, 2013. CC BY-NC-ND 3.0. Right Hannah Wills)

(Left) Eighteenth-century illustration of a beating engine, from Diderot and d’Alembert’s Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol. 5, Paris, 1767. (Right) A kitchen blender achieves roughly the same effect, breaking up old used paper soaked in water to create a pulp. (Image credits: Left “Papermaking. Plate VIII” The Encyclopedia of Diderot & d’Alembert Collaborative Translation Project. Translated by Abigail Wendler Bainbridge. Ann Arbor: Michigan Publishing, University of Michigan Library, 2013. CC BY-NC-ND 3.0. Right Hannah Wills)

 

Having been broken down, the liquid pulp mixture is then transferred to a container. In the eighteenth century, someone known as the ‘vatman’ would have stood over this container and dipped a mould into the solution at a near-perpendicular angle. Turning the mould face upwards in the solution before lifting it out horizontally, the vatman would have pulled out the mould to find an even covering of macerated fibres assembled across its surface. It is these fibres that would later form the finished sheet of paper.[v]

An eighteenth-century vatman dipping the mould into the vat. (Image credit: Detail “Papermaking. Plate X" The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. CC BY-NC-ND 3.0)

An eighteenth-century vatman dipping the mould into the vat. (Image credit: Detail “Papermaking. Plate X” The Encyclopedia of Diderot & d’Alembert Collaborative Translation Project. CC BY-NC-ND 3.0)

 

The moulds used in papermaking determine several features of the finished sheets of paper, including shape, texture and appearance. The type of mould first used in European papermaking was known as a ‘laid’ mould. This mould typically featured wires laced horizontally into vertical wooden ribs, meaning that when the mould was pulled out of the vat, the pulp would lie heavier on either size of the wooden ribs, giving vertical dark patches and the characteristic markings of ‘laid’ paper.[vi]

Screenshot 2017-07-20 11.16.04

A laid mould, with vertical wooden ribs and horizontal wires. A design and marker’s name are visible sewn into the mould, and will leave what is known as the ‘watermark’ on individual sheets of paper. (Image credit: Laid mold and deckle, Denmark – Robert C. Williams Paper Museum, CC0 1.0)

Screenshot 2017-07-20 15.10.07

Characteristic ‘link and chain’ pattern found on laid paper, left by the ribs and wires. This piece is a modern imitation of antique laid paper. (Image credit: Hannah Wills)

 

In mid-eighteenth century Britain, a new type of mould became widely used, developed by the Whatman papermakers based in Kent. This mould was known as a ‘wove’ mould, and had a much smoother surface, consisting of a fine brass screening that was woven like cloth. These moulds imparted a more uniform and fabric-like texture to individual sheets.[vii]

A wove mould, featuring two large watermark designs. Between the watermarks the smooth surface of the woven screening is visible, which leaves the paper with a fabric-like textured appearance, without the prominent horizontal and vertical lines of laid paper. (Image credit: Wove mould made by J. Brewer, London, England - Robert C. Williams Paper Museum, CC0 1.0)

A wove mould, featuring two large watermark designs. Between the watermarks the smooth surface of the woven screening is visible, which leaves the paper with a fabric-like textured appearance, without the prominent horizontal and vertical lines of laid paper. (Image credit: Wove mould made by J. Brewer, London, England – Robert C. Williams Paper Museum, CC0 1.0)

 

For my own papermaking, I chose to dip a piece of fine sieve-like material into my makeshift vat, aiming to replicate partially the texture and appearance of a ‘wove’ mould. The implement I chose for this was a small kitchen pan splatter guard, made up of fine mesh that when pulled out of the vat would hold a layer of fibres on its surface.

My chosen mould, a kitchen pan splatter guard, made from fine sieve-like material. (Image credit: Hannah Wills)

My chosen mould, a kitchen pan splatter guard, made from fine sieve-like material. (Image credit: Hannah Wills)

Dipping the mould into the vat and removing slowly, fibres are left on the surface of the mould. (Image credit: Hannah Wills)

Dipping the mould into the vat and removing slowly, fibres are left on the surface of the mould. (Image credit: Hannah Wills)

 

After the mould was pulled from the vat, the eighteenth-century vatman would pass it on to a coucher who would remove the sheet from the mould, before pressing it between felts to remove the water.[viii]

On the left, the vatman pulls the mould from the vat, before passing it to the coucher on the right hand side of the image, who removes the sheet from the mould before pressing a number of sheets at the same time in a large press. (Image credit: “Papermaking. Plate X" The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. CC BY-NC-ND 3.0)

On the left, the vatman pulls the mould from the vat, before passing it to the coucher on the right hand side of the image, who removes the sheet from the mould before pressing a number of sheets at the same time in a large press. (Image credit: “Papermaking. Plate X” The Encyclopedia of Diderot & d’Alembert Collaborative Translation Project. CC BY-NC-ND 3.0)

 

In order to remove my sheet of paper from the mould, I placed another sieve-material implement over the top of the fibres and pressed down with a sponge. With a tea towel placed underneath, this worked to remove much of the water without the need for a proper press. Pulling the top piece of sieve away from the bottom, I was left with a drier surface of fibres, which could be carefully lifted off the mould, and set aside to dry.

(Left) Pressing the sheet of fibres between two splatter guards. (Right) After the top guard is removed, the pressed sheet of paper is revealed. The circular shape is due to the shape of the mould. (Image credits: Both Hannah Wills)

(Left) Pressing the sheet of fibres between two splatter guards. (Right) After the top guard is removed, the pressed sheet of paper is revealed. The circular shape is due to the shape of the mould. (Image credits: Both Hannah Wills)

 

At this point in the eighteenth-century process, sheets were ‘sized’—dipped into a gelatinous substance made from animal hides that made the sheet stronger and water resistant.[ix] After my sheets had been left to one side to dry for a few hours, I decided to experiment by writing on them. I had not applied size to any of my sheets, so found that when I wrote on them the ink spread out, giving a sort of blotting paper effect.

(Left) After pressing, the sheets are dipped into large tub containing size. This step is important if the paper is to have a slightly waterproof quality that enables it to be written on without the ink spreading. (Right) Writing with ink on untreated sheets results in the ink spreading out across the paper. (Image credits: Left “Papermaking. Plate XI" The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. CC BY-NC-ND 3.0. Right Hannah Wills)

(Left) After pressing, the sheets are dipped into large tub containing size. This step is important if the paper is to have a slightly waterproof quality that enables it to be written on without the ink spreading. (Right) Writing with ink on untreated sheets results in the ink spreading out across the paper. (Image credits: Left “Papermaking. Plate XI” The Encyclopedia of Diderot & d’Alembert Collaborative Translation Project. CC BY-NC-ND 3.0. Right Hannah Wills)

 

After having size applied, sheets in an eighteenth-century papermill would have undergone a number of finishing stages. These included polishing and surfacing, processes that gave the paper a more uniform appearance.[x] With my own sheets of paper, I found passing a warm iron over the surface achieved a similar effect, removing some of the creases and wrinkles that had appeared during drying.

My finished sheet of paper, trimmed down into a small square ready for use. (Image credit: Hannah Wills)

My finished sheet of paper, trimmed down into a small square ready for use. (Image credit: Hannah Wills)

 

It is after these final finishing and drying processes that sheets of paper are ready to be packaged up and sent to the stationer’s.

Replicating historic crafts and processes is not new within the discipline of history. One of my favourite examples is a paper that was published in 1995, in which the historian Heinz Otto Sibum recreated the experiments of the scientist James Prescott Joule (1818-1889) in determining the mechanical equivalent of heat. By trying to recreate the experiment from Joule’s notes, Sibum revealed that Joule made frequent use of the bodily skills he developed while working in the brewing industry, such as the ability to measure temperatures remarkably accurately by using only his elbow.[xi] Often, attempting to replicate an experiment or craft will reveal just how much it relies upon implicit bodily skills, or tacit knowledge, the kinds of ‘knacks’ that are not written down but are simply known to those who perform an activity regularly.

In attempting to replicate the craft of eighteenth-century papermaking, I really only approximated the process, making substitutions for equipment and improvising a number of techniques, particularly when it came to removing my delicate wet sheets of paper from the mould. I think the biggest lesson I learnt was to have a greater appreciation of the material, and just how many skills and processes went into crafting each sheet of paper in the eighteenth century. Characteristics of individual sheets such as colour, texture and markings had not caught my attention in the archives previously, but I now find them fascinating for what they can reveal about the nature of the fibres used, the construction of the paper mould, and the processes followed by each individual papermaker.

 

 

References:

[i] Dard Hunter, Papermaking: The History and Technique of an Ancient Craft (New York: Dover, 1978), 178.

[ii] Ibid., 309-33.

[iii] Ibid., 153-55.

[iv] Theresa Fairbanks and Scott Wilcox, Papermaking and the Art of Watercolour in Eighteenth-Century Britain: Paul Sandby and the Whatman Paper Mills (New Haven: Yale Center for British Art in association with Yale University Press, 2006), 68.

[v] Hunter, Papermaking: The History and Technique of an Ancient Craft, 177.

[vi] Ibid., 114-23.

[vii] Ibid., 125-27. See also Fairbanks and Wilcox, Papermaking and the Art of Watercolour in Eighteenth-Century Britain: Paul Sandby and the Whatman Paper Mills.

[viii] Papermaking and the Art of Watercolour in Eighteenth-Century Britain: Paul Sandby and the Whatman Paper Mills, 71.

[ix] Hunter, Papermaking: The History and Technique of an Ancient Craft, 194.

[x] Ibid., 196-99.

[xi] Heinz Otto Sibum, “Reworking the Mechanical Value of Heat,” Studies in History and Philosophy of Science Part A 26, no. 1 (1995): 73-106.

 

Legacy in Conversation: Scrapbooks, Albums and Diaries in the 18th century

By Hannah L Wills, on 7 March 2017

By Hannah Wills

 

Hannah’s lunch hour talk, ‘Legacy in Conversation: Scrapbooks, Albums and Diaries in the 18th century’, will take place on Tuesday 14 March, 1-2pm, in the UCL Art Museum

 

 
How did people organise their notes and thoughts in the eighteenth century? This question is something that my research aims to get to grips with as I explore the diary and manuscript notebooks of Charles Blagden (1748-1820), an eighteenth-century natural philosopher, and secretary to the major scientific institution, the Royal Society. Whilst working on this strand of my research, which focuses on early modern information storage, retrieval and management, I’ve come across several synergies with the Art Museum’s current exhibition, entitled Legacy: Richard Cooper Jnr and the Artist’s Album.  

Blagden’s diary, vol 4, 3 Apr. 1802, Royal Society. Photo credit: Royal Society

Blagden’s diary, vol 4, 3 Apr. 1802, Royal Society. Photo credit: Royal Society

 

Legacy presents, for the first time, a number of albums produced by Richard Cooper Jnr, a little known eighteenth-century artist and innovative printmaker. As this exhibition shows, Cooper used his albums as repositories for sketches of artworks produced by other artists, as well as his own ideas and compositions. This use of the artist’s album closely mirrors another form of notebook popular in the eighteenth century, known as the ‘commonplace book’. These notebooks, whose origins can be traced back to the Renaissance, served as a kind of textual scrapbook, as a repository for favourite passages copied from other texts, as well as a note-taker’s own thoughts and anecdotes. Such notebooks enabled individuals to retrieve information, and were often used to help the note-taker pen their own prose compositions, including poems and essays.[i]

 

Album

One of Richard Cooper Jnr’s albums on display in the exhibition, UCL Art Museum. Photo credit: UCL Art Museum.

 

Next week, I’ll be giving a lunch hour talk at the Art Museum, exploring some of the connections between the albums of Richard Cooper Jnr and the diaries and commonplace book of Charles Blagden. Described as ‘visual diaries’, I’ll explore how Cooper’s albums are similar to Blagden’s own diary, as devices for storing important ideas, memories and information. Exploring both the text and images found within Blagden’s commonplace book, I’ll take at look at how these notebooks functioned as a kind of textual analogue to the artist’s album, and how albums, diaries and notebooks contribute to notions of ‘legacy’.

 

 

[i] Mark Towsey, Reading the Scottish Enlightenment: Books and Their Readers in Provincial Scotland, 1750-1820 (Leiden and Boston: Brill, 2010), 182.