A A A

Archive for the 'Public Engagement' Category

Question of the Week: Why are sea sponges considered animals?

By Arendse I Lund, on 29 May 2018

By Sarah Gibbs

In that big comparative anatomy lecture hall in the sky, Robert Grant, founder of UCL’s Grant Museum of Zoology, must be smiling. This week’s featured question focuses on Grant’s favourite animal: the sea sponge. Grant’s work definitively proved that sponges are animals, not plants or simple celled organisms.

So, why is a sea sponge more closely related to a dog that a cactus? Read on to find out!

lue Barrel Sponge (Scientific American; Creative Commons Chris Coccaro)

The ever-sage Encyclopedia Britannica informs us that early naturalists classed sponges as plants because, you know, they lack organs, don’t move, and often have branches. Understandable, to be sure. In the eighteenth century, however, scientists began to notice animal characteristics of sponges, including the changes in diameter of their central cavity, and their creation of distinct water currents. Zoologists imagined that sponges occupied an isolated position in the animal kingdom, but molecular testing has since proved that sponges and more complex animals (like humans) developed from a common ancestor; sponges also possess many of the qualities biologists use to distinguish people from plants. For example, bodily composition: the elastic skeletons of sponges are made from collagen, the same protein found in human tendons and skin. Prevailing theories suggest that sponges are early animals which produced no subsequent evolutionary line.

The Venus Flower Basket Sponge (Scientific American; Creative Commons Ryan Somma)

The folks over at Scientific American note that sponges’ specialized cells differentiate them from multicellular protists, creatures which are not animals, plants, or fungus, and which form no tissues. It is the thinness of the sponge body and the fact that its cells are exposed to circulating water—which supplies food and oxygen, and removes waste—that make organs unnecessary. Sponges may have been the first multicellular animals. Multicellularity (which means that cells adhere to one another, communicate, are mutually dependent for survival, and specialize to perform different tasks) is the key to producing more complex organisms. Scientists speculate that sponges emerged, flexing their multicellular muscles*, at least 543 million years ago (*as sponges lack arms, they are sadly ineligible for body building contests). According to Scientific American, sponges were the first filter feeders, tiny Brita jugs of the sea** (**mixed metaphor alert).

So, sponges are in fact the original animal hipster; they were multicellular before it was cool. Let’s close with a few fun sponge facts.

Absorbing (!) Facts:

  1. Sponges can range in height from less than one centimeter to two metres tall.
  2. Most sponges are hermaphroditic (male and female cells exist in one animal) and reproduce sexually by releasing spermatozoan into the water current to be carried to other sponges, where they interact with eggs. Sponges can also reproduce asexually.
  3. Some deep-water sponges are carnivorous. Animals like the ping-pong tree sponge lie in wait for small crustaceans and other hapless sea dwellers to alight on their branches, the hook-like spicules on which prevent escape. Digestive cells migrate to the site of capture and the feast begins. Bet you’ll never look at a loofah the same way again.

 

Sources:

Frazer, Jennifer. “Sponges: The Original Animal House.” Scientific American, 17 Nov. 2011, https://blogs.scientificamerican.com/artful-amoeba/sponges-the-original-animal-house/

Sarà, Michele. “Sponge.” Encyclopedia Britannica. Britannica Academic, Britannica Digital Learning, https://academic-eb-com.libproxy.ucl.ac.uk/levels/collegiate/article/sponge/110257

Question of the Week: Why do box jellyfish have eyes?

By Kyle Lee-Crossett, on 10 May 2018

If you meet me during one of my shifts as a PhD Student Engager in the Grant Museum, you’ll find me next to the Micrarium, facing a case packed full of jellyfish and their ghostly relatives. I’ve never had an interest in jellyfish before, but hours and hours of staring at them over the time I’ve been an Engager has inspired my admiration (as well as a previous blog post).

Box jellyfish specimen at the Grant Museum, photo by author.

In recent weeks, I’ve had a number of visitors ask me about box jellyfish eyes, because it’s surprising to find out that something which often looks and moves like a floating plastic bag has eyes. And not just one or two eyes, but 24 in total. Their eyes are bundled into four structures called rhopalia, which sit around the bottom of its bell. Two of the eye types have the capability to form images, while the other two types help with swimming navigation, avoiding obstacles, and responding to light. Fun fact: Box jellyfish can regenerate their eye bundles (rhopalia) in as quickly as two weeks’ time.

On the specimen in the Grant Museum, you can only see two of it’s eyes because it’s been carefully bisected to reveal its internal anatomy.

Grant Museum specimen with eyes highlighted by author.

Like other jellies, box jellyfish have no brain, perceiving the world only through their nervous systems. Most jellyfish catch their prey without having either brains or eyes, just by floating transparently through the sea until prey run into their tentacles. So, our question should actually be: why do box jellyfish even need eyes?

There are at two main possibilities:

1)  Habitat: Unlike most jellies, which live on the open sea, box jellyfish tend to live in shallow water, which has many obstacles. Scientists have shown that box jellies near Puerto Rico can navigate around the dense mangrove swamps where they live, and also make sure that they don’t drift away to where there is less prey. Their upper lens eye can actually peer through the water’s surface to navigate from landmarks above the water, and perhaps celestial ones as well! Some scientists think these kinds of jellies actively hunt rather than passively encounter prey.

2) Reproduction: Among jellyfish, box jellies also have unusual mating practices, involving the precise transfer of sperm, which might involve the use of their complex eyes to identify mates.

Many things about jellyfish biology and behaviour are still a mystery to scientists, so keep a lookout for ongoing discoveries.

 

Bonus fact: box jellyfish also need to rest their eyes

Scientists have only recently discovered that jellyfish appear to sleep at night—an activity usually only associated with vertebrates. Some reasons why they might do this include is because of their reliance on vision for hunting (they don’t see well enough to hunt in the dark) or because they jellies simply need to take a break from the neural processing their eyes require.

 

 

A Fine Vintage: Grapes and Wine in Ancient Egypt

By Hannah L Wills, on 20 March 2018

Some of the best conversations I have with visitors in the UCL museums start with the question ‘what’s that?’. A couple of weeks ago, I was asked about an object by a visitor to the Petrie Museum of Egyptian Archaeology, as we stood in front of a case containing an array of small objects. The artefact in question was an oval-shaped sculpture with a point at one end, covered on its surface with a pattern of bubble-like protrusions, made from the pale blue ceramic faience. The case contained a number of similarly shaped objects, and a fired clay mould bearing similar bubble-like impressions.

UC795 and UC800, sculptures found in Amarna, Dynasty 18 (1549 BC – 1292 BC). Image credit: Petrie Museum.

UC1700, fired clay mould used in producing faience sculptures similar to those pictured above. Amarna, Late Dynasty 18. Image credit: Petrie Museum.

 

After looking them up on the museum’s online catalogue, we discovered that these small objects were depictions of bunches of grapes, produced using moulds like the one displayed in the case. Grape bunches can be found in a variety of objects in the Petrie Museum, in small sculptures like the ones above, and as part of other artefacts. One of the museum’s faience bead necklaces, likely worn by Tutankhamen’s father and described in a recent blog post, features no less than 83 small bunches of grapes among its beads. Other objects in the museum’s catalogue include fragments of plaster featuring painted designs that incorporate bunches of grapes and vines, from the same location and time period as both the grape sculptures and the bead necklace. My favourite grape-related object is a painted limestone statuette of a monkey, depicted happily devouring an enormous bunch of grapes.

UC1957, reconstructed bead necklace made from faience. The necklace features 83 bunches of grapes, and a variety of other forms, including petals, dates, mandrakes and palm-leaves. Amarna, Late Dynasty 18. Image credit: Petrie Museum.

UC026, painted limestone statuette of a monkey eating a bunch of grapes. Amarna, period of Akhenaten. Image credit: Petrie Museum.

 

Grape clusters like the sculptures above have been found during excavations at a number of New Kingdom sites in Egypt.[i] It has been suggested that grapes were seen as a symbol of royalty, with painted depictions of the fruits often used to decorate royal thrones and garden shrines.[ii] Grapes and vines, and the process of winemaking, also appear on the walls of New Kingdom tombs.[iii] In ancient Egypt, it was mainly the upper classes and royal families who consumed wine. It was also used as an offering to the gods by pharaohs and priests, as seen in depictions in temples from the New Kingdom period up to Greco-Roman times.[iv] As Anna Garnett, curator of the Petrie Museum, has noted, wine was stored in pottery vessels, known as amphorae (pictured below), and was often labelled with the wine’s location of origin and year of production, just as producers do today.[v]

Detail from facsimile reproduction of a wall mural in the tomb of Nakht at Thebes, ca. 1425–1350 BC, Dynasty 18. This fragment depicts the process of wine making. Norman de Garis Davies (1865–1941), Nakht and Family Fishing and Fowling, Tomb of Nakht, tempera on paper. Image credit: Wikimedia Commons.

UC32931, shard of an amphora featuring the text ‘Year 17, sweet wine of the domain of Sehetep-A[ten]’, Amarna, Late Dynasty 18. Image credit: Petrie Museum.

 

Maria Rosa Gausch Jané, a leading expert on wine and viticulture in ancient Egypt, has suggested that grapes were seen as a symbol of resurrection, and may also have been thought to play a role in the transfiguration process undertaken by kings as part of the journey into the afterlife.[vi] Supplies of red and white wine have been found in the burial chamber of Tutankhamun, symbolically positioned to aid in the various stages of the king’s transition to the afterlife.[vii]

Grapes had great significance in ancient Egyptian culture, in terms of their cultivation, consumption, and symbolism. Next time you visit the Petrie Museum, see how many references to grapes and wine you can spot!

 

References

[i] ‘Faience grapes from Amarna’, collections database, Y Ganoflan Eifftaidd / Egypt Centre, Swansea,  http://www.egypt.swan.ac.uk/the-collection-2/the-collection/w344a/ [Accessed 18 Mar 2018].

[ii] Ibid.

[iii] Ibid.

[iv] Maria Rosa Guasch Jané, ‘The Meaning of Wine in Egyptian Tombs: The Three Amphorae from Tutankhamun’s Burial Chamber’, Antiquity 85 (2011): 851-858, p. 855.

[v] Anna E Garnett, ‘Curating the Petrie Museum: Three Object Stories’, 26 Jul 2017, https://blogs.ucl.ac.uk/museums/2017/07/26/curating-the-petrie-museum-three-object-stories/#more-51323 [Accessed 18 Mar 2018].

[vi] Jané, ‘The Meaning of Wine’, pp. 855-856.

[vii] Ibid, p. 857.

Question of the Week: Why Do Wombats Poop Cubes?

By Arendse I Lund, on 14 February 2018

 

A wombat waddling along (Image: © Jack Ashby)

With pudgy little legs and a determined waddle, wombats are amongst Australia’s cutest marsupials. I mean, have you ever seen a wombatlet (not the technical term, unfortunately) sneeze? There’s lots to love about wombats—including their cube-shaped poop.

Wombat faeces—not a snack treat (Image: Bjørn Christian Tørrissen)

This odd wombat feature has sparked a lot of gleeful speculation. The prevailing thought is that these six-sided excrements are caused by a combination of the digestion time, the shape of the large intestine, and the dryness of the resulting fecal matter.

Wombats have a slow digestive system—it takes up to 2.5 weeks for food eaten to make its way down the alimentary canal, through the stomach, small intestine, and finally out the anus as fecal matter. (On the scale of animal defecation time, wombats aren’t even in the running. One snake was recorded as “holding it” for 420 days.)

A common wombat, or Vombatus ursinus, skull with large teeth for masticating grasses and roots, and a skeleton with large front claws for digging (Images: Grant Museum of Zoology, Z68 and Z67)

After being processed by the stomach, the digested matter transverses the large intestine, which is a long tube-like organ with ridged sides. These ridges may help to break the matter into compact sections. Since the final part of the intestine is much smoother, these cubed sections retain their shape all the way to the anus.

A wombat’s long digestive time means that this matter becomes condensed and, ultimately, dry as the nutrients are extracted. Wombats have some of the driest faeces amongst mammals and, it turns out, it’s a handy evolutionary trait. Wombats use their droppings to mark territory; with a propensity to defecate on logs and other elevated objects, cubes won’t roll off, unlike cylindrical droppings. As wombats drop between 80 and 100 scats a day, it would be a pain if they, well, scattered.

 

According to Jack Ashby, Manager of the Grant Museum of Zoology, “Another thing to note about wombat poo is that since wombats have backwards-facing pouches, larger wombatlets end up spending a lot of time with their faces in poo. It has been suggested that this is an important way that they gain helpful gut bacteria that they need to digest the wombat diet of tough Australian grasses.”

If you want to see fake wombat faeces in action, Robyn Lawrence created a video demonstrating a wombat’s digestive system. She uses Jell-O to illustrate the forming and squeezing of the food into cube shapes, which then passes unchanged through the colon and out the fake anus.

So no, the wombat rectum isn’t square.

———

Further Reading:

Menkhorst, P. A Field Guide to the Mammals of Australia. South Melbourne: Oxford University Press, 2001.

Triggs, Barbara. The Wombat: Common Wombats in Australia. University of New South Wales Press, 2002.

What do Kids ask Scientists?

By Citlali Helenes Gonzalez, on 26 January 2018

Science is exciting, science is fascinating, and with science you never get bored — this is what I want to communicate to children when I give talks about my research. As I work with brains, lasers and 3D printing, that’s easy enough. When I talk about neuroscience and what I do in the lab as a PhD student, kids are always interested even if the younger ones don’t even know what a brain does. When I show them pictures of my research (see below), which involves working with brain cells and dissecting brains, there’s always an eww sound — because the brain is “slimy”.

 

 

 

 

 

A pig’s brain, which — according to kids — is gross because it’s slimy. (Image: Author’s own photo)

 

 

 

 

 

The same brain cut into pieces. (Image: Author’s own photo)

 

After my talk, with just a couple of minutes left and a lot of hands raised, I get a lightning round of questions. They range from all aspects of life, not just science as they assume that scientists know everything about everything in the universe. This would be cool, but it’s definitely not the case. Anyhow, I always have a blast answering their unique questions, so I’ve decided to share a couple of my favourites and some of the trickier ones here. Here is a taster of them, followed by my inner dialogue (ID) and what I actually answered (A). As you will see, my inner dialogue can be quite different from the answer, which just shows how difficult it can be to answer unexpected questions. Remember, as I always tell the kids, there are no stupid questions.

 

Q: Can you make little animals?

ID: Other than little humans in my uterus, no.

A: Scientist are trying to make organs in the lab by growing cells in a specific way, but we can’t grow a full animal yet.

 

Q: Why do you die?

ID: Because our bodies can’t cope with so much wisdom.

A: It’s a big scientific question, trying to answer why we age and ultimately die. Our bodies grow older and our cells don’t regenerate as much as they used to, but ultimately we don’t know exactly why this happens.

 

Q: How much do you make?

ID: Not enough.

A: Enough.

 

Q: Is it true that when you die your heart explodes?

ID: Yes, if you die in an explosion.

A: No, when you die your heart just stops beating.

 

Q: Can we even get to fully understand the brain if it’s always evolving?

Now, this one really impressed me because: 1) she knows about evolution and understands that not only we as a species evolved but we are still evolving and so are our brains; 2) she knows that we don’t know everything about the brain; and 3) it’s just a really interesting question coming from a 10-year-old!

ID: Wow, yeah that’s true, can we?

A: That’s a very good question. Yes, we don’t know fully how the brain works but there are breakthroughs in science every day and new tools and techniques will allow us to one day fully understand the brain, even if it’s still evolving.

 

Q: My friend told me that he saw a ghost and… (After a long story about his friend seeing a ghost, the teacher was a little fed up with his not very scientific question and the rest of the class was giggling).

ID: I’m also giggling.

A: Just because your friend said so that doesn’t mean it’s real. You have to question him and ask him to show you evidence of what he claims is true. Remember to always question everything and look for evidence.

 

Q: What’s the most interesting thing you’ve discovered?

ID: How resilient I can be when facing relentless adversity, demonstrated by how my numerous failed experiments and negative results have broken my spirit yet have not killed my wandering scientific mind. Oh, wait, you mean like in science?

A: How cool neurons look down a microscope.

 

Q: Why do you like gross stuff?

ID: What are you talking about? Brains are not gross, they’re amazing!

A: What are you talking about? Brains are not gross, they’re amazing!

 

Q: How old is the universe?

ID: Oh god, try to remember, you know this.

A: Around 14 billion years.

Q: How much is that?

A: A lot!

 

So there you have it: kids and their questions. I wish to thank the schools that invited us PhD students, as well as the children for listening to me and asking such stimulating questions. Keep your curiosity alive!

 

We’re Hiring Student Engagers!

By Arendse I Lund, on 24 January 2018

Are you a UCL student and excited to share your PhD research with the world? Can you find connections between your research and museum collections? Come join our Student Engager team!

Citlali Helenes Gonzalez presents during the Materials & Objects event in the UCL Art Museum last spring.

 

Who We Are

We’re a interdisciplinary team of PhD students from across UCL who are interested in public engagement and sharing our doctoral research with the world. We come from different backgrounds and departments and study everything from medieval law to neuroscience to the Dark Web. You might spot us in the UCL Art Museum, Grant Museum of Zoology, or Petrie Museum of Egyptian Archaeology any day of the week talking about our research and how it relates to the museum collections.

We love talking to people, sharing expertise, and making new connections that benefit both the public and our own research. Sometimes we also host events such as Foreign Bodies, LandSCAPE, Stress: Approaches to the First World War, and Materials & Objects.

 

Are You the One?

We’re hiring! If you’re a first or second-year PhD student interested in working in the three UCL museums, sharing your knowledge, engaging the public in dialogue, and enhancing visitors’ experiences of UCL, then we want to hear from you. We think this is the best gig ever and we want equally enthusiastic people to come join us. We’ve also written extensively on this blog about what the Student Engager experience is like and highly recommend you take a look around if you’re interested in joining us.

For the practical side, here’s a full job description (PDF); you should email your CV and cover letter to Celine West (celine.west@ucl.ac.uk) by 16 February.

If you have any questions, tweet us or find us in one of the UCL museums.

Question of the Week: What’s this Museum For?

By Hannah L Wills, on 19 October 2017

By Hannah Wills

 

 

A couple of weeks ago, whilst engaging in the Grant Museum, I started talking to some secondary school students on a group visit to the museum. During their visit, the students had been asked to think about a number of questions, one of which was “what is the purpose of this museum?” When asked by some of the students, I started by telling them a little about the history of the museum, why the collection had been assembled, and how visitors and members of UCL use the museum today. As we continued chatting, I started to think about the question in more detail. How did visitors experience the role of museums in the past? How do museums themselves understand their role in today’s world? What could museums be in the future? It was only during our discussion that I realised quite how big this question was, and it is one I have continued to think about since.

What are UCL museums for?

The Grant Museum, in a similar way to both the Petrie and Art Museums, was founded in 1828 as a teaching collection. Named after Robert Grant, the first professor of zoology and comparative anatomy at UCL, the collection was originally assembled in order to teach students. Today, the museum is the last surviving university zoological museum in London, and is still used as a teaching resource, alongside being a public museum. As well as finding classes of biology and zoology students in the museum, you’re also likely to encounter artists, historians and students from a variety of other disciplines, using the museum as a place to get inspiration and to encounter new ideas. Alongside their roles as spaces for teaching and learning, UCL museums are also places for conversation, comedy, film screenings and interactive workshops — a whole host of activities that might not have taken place when these museums were first created. As student engagers, we are part of this process, bringing our own research, from a variety of disciplines not all naturally associated with the content of each of the museums, into the museum space.

 

A Murder-Mystery Night at the Grant Museum (Image credit: Grant Museum / Matt Clayton)

A Murder-Mystery Night at the Grant Museum (Image credit: Grant Museum / Matt Clayton)

 

What was the role of museums in the past?

Taking a look at the seventeenth and eighteenth-century roots of the Ashmolean Museum in Oxford and the British Museum in London, it is possible to see how markedly the role and function of the museum has changed over time. These museums were originally only open to elite visitors. The 1697 statues of the Ashmolean Museum required that ‘Every Person’ wishing to see the museum pay ‘Six Pence… for the Space of One Hour’.[i] In its early days, the British Museum was only open to the public on weekdays at restricted times, effectively excluding anyone except the leisured upper classes from attending.[ii]

Another feature of these early museums was the ubiquity of the sense of touch within the visitor experience, as revealed in contemporary visitor accounts. The role of these early museums was to serve as a place for learning about objects and the world through sensory experience, something that, although present in museum activities including handling workshops, tactile displays, and projects such as ‘Heritage in Hospitals’, is not typically associated with the modern visitor experience. Zacharias Conrad von Uffenbach (1683-1784), a distinguished German collector, recorded his visit to Oxford in 1710, and his handling of a range of museum specimens. Of his interactions with a Turkish goat specimen, Uffenbach wrote, ‘it is very large, yellowish-white, with… crinkled hair… as soft as silk’.[iii] As Constance Classen has argued, the early museum experience resembled that of the private ‘house tour’, where the museum keeper, assuming the role of the ‘gracious host’, was expected to offer objects up to be touched, with the elite visitor showing polite and learned interest by handling the proffered objects.[iv]

Aristocratic visitors handle objects and books in a Dutch cabinet of curiosities, Levinus Vincent, Illustration from the book, Wondertooneel der Nature - a Cabinet of Curiosities or Wunderkammern in Holland. c. 1706-1715 (Image credit: Universities of Strasbourg)

Aristocratic visitors handle objects and books in a Dutch cabinet of curiosities, Levinus Vincent, Illustration from the book, Wondertooneel der Nature – a Cabinet of Curiosities or Wunderkammern in Holland. c. 1706-1715 (Image credit: Universities of Strasbourg)

 

How do museums think about their function today?

In understanding how museums think about their role in the present, it can be useful to examine the kind of language museums employ when describing visitor experiences. The British Museum regularly publishes exhibition evaluation reports on its website, detailing visitor attendance, identity, motivation and experience. These reports are fascinating, particularly in the way they classify different visitor types and motivations for visiting a museum. Visitor motivations are broken down into four categories: ‘Spiritual’, ‘Emotional’, ‘Intellectual’ and ‘Social’, with each connected to a different type of museum function.[v]

Those who are driven by spiritual motivations are described as seeing the museum as a Church — a place ‘to escape and recharge, food for the soul’. Those motivated by emotion are understood as searching for ‘Ambience, deep sensory and intellectual experience’, the role of the museum being described as akin to that of a spa. For the intellectually motivated, the museum’s role is conceptualised as that of an archive, a place to develop knowledge and conduct a ‘journey of discovery’. For social visitors, the museum is an attraction, an ‘enjoyable place to spend time’ where facilitates, services and welcoming staff improve the experience. Visitors are by no means homogenous, their unique needs and expectations varying between every visit they make, as the Museum’s surveys point out. Nevertheless, the language of these motivations reveals how museum professionals and evaluation experts envisage the role of the modern museum, a place which serves multiple functions in line with what a visitor might expect to gain from the time they spend there.

What will the museum of the future be like?

In an article published in Frieze magazine a couple of years ago, Sam Thorne, director of Nottingham Contemporary, invited a group of curators to share their visions on the future of museums. Responses ranged from the notion of the museum as a ‘necessary sanctuary for the freedom of ideas’, to more dystopian fears of increased corporate funding and the museum as a ‘business’.[vi] These ways of approaching the role of the museum are by no means exclusive; there are countless other ways that museums have been used, can be used, and may be used in the future. My thinking after the conversation I had in the Grant Museum focussed on my own research and experience with museums, but this is a discussion that can and should be had by everyone — those who work in museums, those who go to museums, and those who might never have visited a museum before.

 

What do you think a museum is for? Tweet us @ResearchEngager or come and find us in the UCL museums and carry on the discussion!

 

References:

[i] R. F. Ovenell, The Ashmolean Museum 1683-1894 (Oxford: Clarendon Press, 1986), 87.

[ii] Fiona Candlin has written on the class politics of early museums, in “Museums, Modernity and the Class Politics of Touching Objects,” in Touch in Museums: Policy and Practice in Object Handling, ed. Helen Chatterjee, et al. (Oxford: Berg, 2008).

[iii] Zacharias Konrad von Uffenbach, Oxford in 1710: From the Travels of Zacharias Conrad von Uffenbach, trans. W. H. Quarrell and W. J. C. Quarrell (Oxford: Blackwell, 1928), 28.

[iv] Constance Classen, “Touch in the Museum,” in The Book of Touch, ed. Constance Classen (Oxford Berg, 2005), 275.

[v] For this post I took a look at ‘More than mummies A summative report of Egypt: faith after the pharaohs at the British Museum May 2016’, Appendix A: Understanding motivations, 27.

[vi] Sam Thorne, “What is the Future of the Museum?” Frieze 175, (2015), accessed online.

Materials and Objects: The Secrets behind our Research

By Josephine Mills, on 16 May 2017

 

Materials and Objects, an afternoon of short talks by UCL’s student engagers, will be taking place on Thursday 18th May 2017, UCL Art Museum 2-4pm

Our next event ‘Materials and Objects’ is just a few days away and I thought this would be a good opportunity to chat a little bit about the event and our work as research engagers in general! This Thursday an afternoon of short talks will be given by UCL PhD researchers on a wide variety of topics, with a focus on the materials and objects that underlie each of our research areas. How this is interpreted varies from discipline to discipline but we all directly deal with materials and objects—or the systems used to understand, archive, and process them—whether it’s studying how objects like diaries and brains can be created, or interpreting new layers of meaning from materials like medieval manuscripts. As a team we employ a huge variety of different techniques, although we often surprise ourselves by the degree of overlap even with our disparate time frames and subject materials!

Materials and objects

 

 

 

 

 

 

 

 

 

The event itself is being hosted by UCL Art Museum—one of the museums we actively engage in—as our work reflects themes and pieces from the space itself. In fact, as research engagers, you can usually find one of us in the three museums on campus: the Art Museum, the Grant Museum or the Petrie Museum of Egyptian Archaeology. Depending on which museum we’re engaging in, different aspects of our research intersects with the displays.

As an archaeologist who focuses on prehistoric stone tools when I’m in the Petrie Museum I usually talk to people about the flint artefacts that you may not necessarily associate with the Ancient Egyptians. In the Art Museum I mainly focus on discussing landscape as my research also deals with reconstructing ancient landscape use.

Funnily enough last Tuesday in the Grant Museum someone asked me ‘So how do you relate rocks to this?’ as they gestured widely indicating the menagerie of fauna, both skeletal and preserved, surrounding us. I hastily indicated the Neanderthal skull cast around the corner and we chatted about Ice Age megafauna and hunting. We also talked about research in general and how, although he had studied medieval history, many of the processes that we use to get to the end goal are similar across all disciplines be it archaeological or neuroscience.

flint snake

The head of a flint snake (UC. 15171), which I often point out to people in the Petrie Museum, it is part of a display of flint animals including cows, dogs and birds! This demonstrates flint’s use as non-practical material and highlights its importance in Ancient Egypt! (photo by author)

 

That pretty much sums up the core of being a research engager, attempting to make what we do – which may at first glance sound niche – relevant and interesting to visitors of UCL Museums and UCL in general. In turn we benefit from having other opinions about our research as well, which can sometimes seem like a solo journey!

So come and see for yourself this Thursday—expect science, art, cake, and the odd Neanderthal!

Grab a free ticket here:

https://www.ucl.ac.uk/culture/events/materials-and-objects-what-do-researchers-ucl-study

 

Materials & Objects: What do researchers at UCL study?

By Hannah L Wills, on 2 May 2017

Materials & Objects, an afternoon of short talks by UCL’s student engagers, will be taking place on Thursday 18 May 2017, UCL Art Museum, 2-4pm.

Taking a look at the range of posts we’ve had on our blog just recently, I’m struck by how many different kinds of materials we work with as researchers at UCL. From brains to archives, from skeletons to manuscripts, there’s a whole range of ‘stuff’ that forms the core of our research as PhD students, not to mention the objects we engage and interact with while we work in the museums, chatting about our research with the public.

In two weeks, a group of student engagers are getting together for an afternoon of short talks in the Art Museum, presenting and explaining their research based around the theme of materials and objects. Each short talk will give an insight into some of the research that happens at UCL, in departments ranging from Security and Crime Science to the Institute of Archaeology.

Arendse Lund, whose blog posts have explored unusual book-bindings as well as medieval twitter, will be ‘Marvelling at Medieval Manuscripts’ and their makeup.

Face-to-face with medieval manuscripts (Image credit: Bamberg, Staatsbibliothek, Msc. Patr. 4, f. 69r)

Face-to-face with medieval manuscripts (Image credit: Bamberg, Staatsbibliothek, Msc. Patr. 4, f. 69r)

Speaking about my work on eighteenth-century notebooks and diaries, I’ll be explaining how eighteenth-century paper was made, and how it was used by note-takers.

Kyle Lee-Crossett, who reflected last month on the absence of people in images of archives, will be delving into ‘Invisible Boxes’, exploring the materials of archives and collections.

Feeling disoriented yet? (Image credit: Kyle Lee-Crossett)

Feeling disoriented yet? (Image credit: Kyle Lee-Crossett)

Cerys Bradley, who has written about her work on the museum audio guide project, will be speaking at the event about her work studying illegal objects on the Dark Web.

Citlali Helenes González will be exploring the material of the body, in her talk ‘How to Build a Brain in the Lab’. You can find out more about Citlali’s fascinating research, and building brains, here.

Gordon Museum Brain Collection at the Grant Museum at UCL (Image credit: Grant Museum)

Gordon Museum Brain Collection at the Grant Museum at UCL (Image credit: Grant Museum)

Josie Mills, who has written recently about her work on Neanderthal landscape use and migration, will be revealing in her talk just where the Neanderthals got their stuff.

Stacy Hackner, whose work focuses on the tibia, will be explaining how bone reacts to activity in her talk, ‘Standing on One Foot’.

 

Our ‘Materials & Objects’ event will be happening on Thursday 18 May in the UCL Art Museum, from 2-4pm. Do join us if you can—the event will conclude with tea and refreshments, and an opportunity to meet the researchers. You can find out more and view our poster for the event here.

The event is FREE to attend, but online booking is suggested via: http://www.ucl.ac.uk/event-ticketing/booking?ev=16160

 

Question of the Week: Why do brains have wrinkles?

By Citlali Helenes Gonzalez, on 27 April 2017

The brains displayed at the entrance of the Grant Museum are mostly mammal’s brains but we can observe differences in sizes and in how smooth or wrinkly they are. The folds of a brain are called gyri and the grooves are called sulci. These morphological features are produced by the folding of the cortex, the part of our brain responsible for higher cognitive processes like memories, language and consciousness. During development, all brains start off with a smooth surface and as they grow, gyrification (the development of the gyri and sulci) occurs. It is interesting to note that the major folds are very consistent amongst individuals, meaning that development is similar sometimes even amongst species.

c_ucl_gmz_matt_clayton020

The brain collection on display at the Grant Museum of Zoology (Image credit Grant Museum of Zoology).

 

It has been assumed that the wrinkles in brains correlate with an animal’s intelligence. The reasoning behind this is that a bigger brain, and hence more neurons, need more space. The folds allow the cortex to increase its area while being packed in a confined space like our cranium. There are several factors and hypothesis of how gyrification occurs. Recently, researchers at Harvard developed a 3D gel model based on MRI (magnetic resonance imaging) images to understand how this process occurs. They found out that it all boils down to the mechanical properties of the cortex. While neuronal cells grow and divide, the increasingly bigger brain leads to a compression of the cortex and to the formation of the folds. The researchers were able to mimic the folds of the cortex and were stunned at how similar their gel model looked to a real human brain.

tumblr_o21mv85Nt01t5fphqo1_1280

Gel model of a foetal brain (Image credit: Mahadevan Lab/Harvard SEAS).

 

Even though most of the brains on display in the Grant museum have gyri and sulci, in nature, most animals have smooth brains. In general, larger brains have folds while smaller brains do not, even small mammals like rats or mice have smooth brains. In humans, a lissencephalic brain is one without gyri and sulci and is a result of a rare disorder that is characterised by mental abnormalities. From the collection of brains in the Grant Museum, there is only one lissencephalic brain—next time you visit the museum see if you can spot it. Additionally, try to find the brain coral. Because of its intricate maze–like pattern, Diploria labyrinthiformis has very similar ridges and grooves as a brain, and so is referred to as brain coral. Overall, I find looking at brains and their grooves fascinating, each species with their own pattern and each groove in a specific place. Makes me wonder how brain coral gets its patterns.

brain coral 3

Diploria labyrinthiformis also known as brain coral(Grant Museum C1084).

 

References:

Roth, G. and Dicke, U., 2005. Evolution of the brain and intelligence. Trends in cognitive sciences9(5), pp.250-257.

Ronan, L. and Fletcher, P.C., 2015. From genes to folds: a review of cortical gyrification theory. Brain Structure and Function220(5), pp.2475-2483.

Manger, P.R., Prowse, M., Haagensen, M. and Hemingway, J., 2012. Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals. Journal of Comparative Neurology520(11), pp.2430-2439.