X Close

GEE Research

Home

Research in Genetics, Evolution and Environment

Menu

Male Promiscuity Boosts Role of Chance in Sex Chromosome Evolution

By Claire Asher, on 19 March 2015

Humans, like all mammals and birds, determine sex with chromosomes. Whether a fertilised egg develops into a male or female depends on what chromosomes it carries Scientists have long recognised that genes evolve a little differently on the sex chromosomes, and recent research in GEE suggests this may be due to differing patterns of inheritance that favour the influence of chance on gene sequence change. Furthermore, promiscuity in males has a large influence on the magnitude of this effect, with chance playing an even greater role in sex-chromosome evolution in highly promiscuous species. Using genetic sequence data in combination with physical and behavioural measurements of promiscuity in birds, Dr Alison Wright and Professor Judith Mank report strong evidence for the role of neutral forces in sex chromosome evolution.

In birds and mammals, along with some invertebrates and reptiles, sex is determined by the chromosomes you carry – the sex chromosomes, as they are aptly named. If you are a male mammal, you carry one X and one Y chromosome; a female mammal carries two X chromosomes. Similarly, if you are a male bird, you carry two Z chromosomes; a female carries one Z and one W. Whether it’s the XY system, the ZW system or even the UV system used by some species of algae, the result is more or less the same. Sex is determined by the presence or absence of particular chromosomes. This isn’t always the case – some species determine sex using temperature during development, other species determine sex based on social conditions, while others do away with fixed sexes altogether and are either hermaphrodite or possess the ability to switch sex. However, one of the most common, and certainly the best studied, systems among living organisms is to determine sex with chromosomes.

Unlike autosomal chromosomes (all our chromosomes that are not sex chromosomes), sex chromosomes are not inherited and expressed equally across the sexes. The Y and W chromosomes only ever appear in one sex, for example. This has some interesting consequences for evolution. For example, scientists have found that the ‘major sex chromosomes’ (X and Z chromosomes) tend to evolve faster than the autosomes. Known as the Faster-X (or Faster-Z) effect, this phenomenon is now well documented in a range of different species, and scientists have suggested a number of possible explanations for why this might be the case. Faster evolution on the major sex chromosomes might be caused by more effective natural selection favouring beneficial mutations (adaptive hypothesis) or due to less effective natural selection failing to remove harmful mutations (neutral hypothesis).

Why would natural selection act differently on sex chromosomes than autosomal ones? In a paper published in Molecular Ecology this month, Dr Alison Wright explains that the differences between chromosomes arise because of differences in the pattern of inheritance, which ultimately influences the number of chromosomes that are passed on to the next generation, called the effective population size. An individual who never reproduces is an evolutionary dead end, and as their genes are not passed on, and they are not counted in the effective population size. Individuals that do mate contribute sex chromosomes unevenly, and this can have a significant impact on the course of sex-chromosome evolution.

When two individuals mate, they each pass one of each pair of chromosomes to the offspring. Each chromosome has an equal likelihood of being carried by the offspring, and the effective population size (ie chance of being passed on) of all autosomal chromosomes is the same. But for the sex chromosomes, things are a bit more complicated. Each time a pair of individuals mate, between them they bring three major sex chromosomes and one minor chromosome to the table. This translates to major sex chromosomes having an effective population size three times larger than the minor sex chromosomes. And both sex chromosomes have a smaller effective population size than the autosomes.

But that’s only if everybody is monogamous. As soon as promiscuity is involved, things get even more complicated. If males are promiscuous (and they often are, in the animal kingdom), then this means some males in the population are likely to be very successful, while others fail to reproduce at all. In other words, the variance in male mating success is much higher. Promiscuity reduces the effective population size of the minor chromosomes even further.

promiscuitysexchromosomes

Why does effective population size matter? Well, the effective population size determines the relative influence of chance on gene sequence evolution. Although we generally think of evolution progressing as natural selection favours beneficial mutations and purges deleterious ones, chance also has a big role to play. Chance, known in this context as genetic drift, has a bigger impact on small populations, and rare mutations. This is because when a particular mutation is rare, it only takes a little bit of bad luck for it to be lost forever. Just think of the times you’ve walked home in the rain only to hear the characteristic crunch of the end of a snail’s life – here your foot is the agent of genetic drift. The death of that snail had little or nothing to do with the genes it carried, but your foot has altered the course of evolution, slightly. The effective population size of autosomal genes reflects the population size of the organisms they are found in, but for the sex chromosomes, their effective population size is even smaller, making them more prone to genetic drift.

Dr Alison Wright, Professor Judith Mank and colleagues from GEE sequenced expressed genes in six species of birds, spanning 90 million years of evolution, to investigate the rate of evolutionary change in genes on different chromosomes. They compared sequence data from monogamous species like the Swan Goose (Anser cygnoides) and the Guinea Fowl (Numida meleagris) with promiscuous species like the Mallard duck (Anas platyrhynchos), wild Turkey (Meleagris gallopavo), and Peafowl (Pavo cristatus) to investigate how gene sequences and gene expression patterns vary both within and between species. They then matched data on the rate of evolution with characteristics of species that are associated with promiscuity, such as testes weight and sperm number. Their results indicate that natural selection is less effective on the Z chromosome in general, and this becomes even more pronounced in promiscuous species. The authors therefore conclude that Faster-Z evolution in birds is not adaptive, but is driven by neutral processes.

mec13113-fig-0002

Differences in gene sequences within and between species can tell us a lot about the rate of evolution for different lineages. This is because the genetic code has some redundancy in it – DNA is split up into three-letter words or codons, and there are many cases where different codons translate into the same amino acid. So, it is possible to have genetic sequence change that is essentially invisible to natural selection – it doesn’t alter the resulting protein sequence and so has no influence on the organism. Changes in gene sequence that swap between these ‘synonymous’ codons can therefore give us a rough baseline of neutral change. Non-synonymous differences (the ones that do have an effect on the organism), between individuals or between species, represent the rate of evolution. More non-synonymous changes suggests either positive selection, where evolution favours those changes because they are beneficial, or genetic drift, where selection is weaker and cannot remove slightly harmful mutations from the population. The authors found that genes on the Z chromosome show a faster rate of non-synonymous change than autosomal genes. Further, the ratio was significantly correlated with measures of promiscuity, with more promiscuous species having more non-synonymous changes.

Although this could be a mark of positive natural selection, the authors found no difference in the number of genes undergoing positive selection between sex- and autosomal-chromosomes, suggesting the Faster-Z effect is driven by genetic drift rather than positive selection. In fact, differences within species indicate that natural selection is less effective at removing mildly deleterious mutations from the Z chromosome than the autosomes. Combined with other analyses on gene expression, these results show strong support for the neutral explanation for Faster-Z evolution in birds.

Interesting, promiscuity increases the effective population size of X chromosomes, and that may explain why previous studies have found evidence that Faster-X chromosome may well be due to positive selection. These differences suggest that Z chromosomes may be less important in adaptation than X chromosomes.

Original Article:

nerc-logo-115ERC

This research was made possible by funding from the Natural Environment Research Council (NERC) and the European Research Council (ERC).

Evolving Endemism in East Africa’s Sky Islands

By Claire Asher, on 8 August 2014

The World’s biodiversity is not evenly distributed. Some regions are hot spots for species richness, and biologists have been trying better to understand why these regions are special and what drives evolution and diversification. A recent paper by GEE’s Dr Julia Day and recent PhD graduate Dr Siobhan Cox, investigated the diversification of White-Eye Birds in East Africa’s Afromontane Biodiversity hotspot. Their results indicate that speciation in these birds has likely been driven by adaptation to a gradient of environmental conditions.

The East Afromontane Biodiversity Hotspot (EABH) is one of the most biodiverse regions on Earth, but it is under constant threat from increasing urbanisation in the area, which is predicted to continue over coming decades. It is therefore crucial to quantify what biodiversity is found in this hotspot, and understand the evolutionary processes that have made it a hotspot. The geography in this region is quite special, and is thought to have been a key factor driving high levels of species richness here. The Afromontane region is formed of a chain of ancient massifs (mountains created by faults and flexures in the Earth’s crust) and relatively young volcanoes. The low-lying regions between these peaks are covered in arid savannah, but montane forests appear on the peaks above about 800m. These forests exists as “ecological islands”, isolated from each other since the early Oligocene around 33 million years ago. Before this, conditions in the region were less arid and continuous forests covered the mountains and the valleys. As the forests retracted and fragmented, their inhabitants became isolated from one another, and this may have led to the emergence of new species, unique to each isolated montane fragment.

A Brief Introduction to Speciation
The processes by which new species arise depend upon the circumstances. Traditionally, speciation was thought to occur as a result of geographic separation of populations of a single ‘parent’ species. Once isolated and unable to interbreed, the two populations would slowly diverge from each other both due to random genetic change and adaptation to differing conditions. If enough time passed before the two populations came into contact with each other again, then they would eventually be so distinct that they were unable to interbreed even if they were reunited, and therefore should be classified as separate species. This is the standard model of speciation, known as allopatric speciation. It is now appreciated that new species can arise even without geographical isolation in a process known as sympatric speciation, often this can be caused by isolation of other kinds, such as behavioural isolation or through selective mate choice. It is generally accepted, however, that speciation requires, at least, a massive reduction in the rates of interbreeding between two populations or subspecies. Interbreeding will tend to restrain divergence as it mixes genes between the populations.

Evolving Endemism
There are two main hypotheses for how the extraordinarily high levels of endemism arose on the montane forest ‘islands’:

  1. The Montane Speciation Model suggests that montane ‘islands’ became refugia for species as they tracked suitable conditions up the mountain. This idea is based on a general theory for speciation and divergence known as ‘niche conservatism’, which suggests that geographical isolation of populations is driven by an inability to adapt to changing conditions. Once isolated, populations begin to diverge from one-another and over time this generates very high species richness.
  2. The Gradient Speciation Model by contrast, hypotheses that new species emerge as a result of adaptation to different conditions along a gradient. In this model, adaptation and niche divergence drive speciation, and we expect to find related species living in adjacent habitats.

The EABH is home to over 1300 described species of bird, of which 110 are known to exist nowhere else on Earth. In a recent paper in Molecular Ecology, Dr Day, along with colleagues at the Natural History Museum (Tring, Hertfordshire), the Technical University of Munich and the National Museums of Kenya, investigated the pattern of divergence in African montane white-eyes (Zosterops), a group of small, gregarious birds. Each montane forest fragment houses a single, endemic species, while other species live on real islands, and others live in other habitats on the mainland. This makes them an ideal group to test the competing hypotheses of niche conservatism and niche divergence.

The authors collected mitochondrial and genomic DNA samples for 148 birds from 15 species found across the EABH and elsewhere. They estimated the evolutionary timing of each species’ divergence based on both geological and molecular data, to investigate whether the montane taxa speciated in their current habitat or elsewhere, and whether they speciated before or after the climatic changes that isolated forest fragments.

A Late Pleistocene Colonisation
Based on molecular data, the authors estimate that White-eyes colonised Africa in the late Pleistocene, around 1.55 million years ago, and then exhibited brief pulses of diversification from 0.9 million years ago until around 0.3 million years ago. The genus Zosterops therefore colonised the region long after the montane forest habitat had fragmented into ecological islands, discounting the montane speciation hypothesis. Montane species diverged from their lowland sisters around 1 million years ago, during the last major wet phase. In some cases, montane species were found to be older than species found in neighbouring lowland areas, indicating colonisation in the other direction. They found no evidence that diversification of the White-eyes corresponded with volcanic activity in the region, which has previously been suggested.

They found that many of the so-called ‘species’ of Zosterops in fact include multiple sub-species, and they found strong support for already identified subspecies. This suggests that different species and subspecies independently colonised the montane habitat, and have remained more or less the same since. That the lowland savannahs that exist between the montane islands is a strong barrier that isolates montane populations is strongly supported by their results – species on neighbouring sky islands are very different from each other genetically, indicating they have not interbred for a great deal of evolutionary time. This is similar to the pattern of colonisation and diversification seen in White-eye species that live on real islands, which likely present similar evolutionary pressures to the ecological islands found in fragmented habitats.

Overall, their results support a niche divergence explanation of speciation in Montane White-Eyes, consistent with the gradient hypothesis, and ruling out niche conservatism models, such as the montane speciation hypothesis. However, the authors point out that their results do not distinguish between the gradient hypothesis and similar alternative, the vanishing refugia model, which suggests that speciation occurs through adaptation to less favourable habitats as suitable habitat contracts and refugia become unable to maintain viable populations. Further research is needed to conclusively distinguish between these models. The relative climatic stability of the highland montane habitats, couples with frequent climatic fluctuations in low-land areas may have played a key role in diversification in White-eyes, and may be a key driver of endemism in this region.

Original Article:

nerc-logo-115

This research was made possible by funding from the Natural Environment Research Council (NERC).

It Pays to Be Different:
Evolutionary Distinctiveness and Conservation Priorities

By Claire Asher, on 15 July 2014

The world is currently experiencing an extinction crisis. A mass extinction on a scale not seen since the dinosaurs. While conservationists work tirelessly to try and protect the World’s biodiversity, it will not be possible to save everything, and it is important to focus conservation efforts intelligently. Evolutionary distinctiveness is a measure of how isolated a species is on it’s family tree – how long ago it split off from its nearest living relative. A recent paper co-authored by UCL GEE’s Dr David Redding, published in Current Biology, assessed how effective evolutionary distinctiveness is a tool for identifying bird species of conservation priority. Current conservation efforts are missing some of the most evolutionarily distinct species.

Evolutionary distinctiveness (ED) is measured as the distance along the evolutionary tree from one species to it’s nearest relative. It can be used as a measure of how much evolutionary ‘information’ would be lost if this species were to become extinct. We have good estimates of these distances for birds as we have been able to put dates on the evolutionary tree based on fossil records and molecular data. A recent analysis of nearly 10,000 known bird species, by researchers at Yale University, Imperial College London, University of Sheffield, Simon Fraser University, University of Tasmania and University College London, showed some patterns we might have expected, for example, evolutionary distinctiveness is highest in isolated regions (e.g. Australia, New Zealand and Madagascar) and regions with higher species richness tended to have more evolutionary distinct birds. However, there were also some unexpected results. For example, ED wasn’t strongly related to latitude, a pattern predicted by the idea that the tropics act as a ‘museum’ for ancient lineages, nor was ED related to a species’ range-size, which has previously been predicted theoretically.

Evolutionary distinctiveness showed little relationship with conservation status – some of the most threatened distinct species are found outside of biodiverse regions that are usually the target of conservation efforts. This means that, when we consider only species richness or total biodiversity to identify regions to conserve, we may be missing a great deal of evolutionary information. Instead, basing areas of conservation priority on the evolutionary distinctiveness of their flora and fauna may offer a more efficient and effective way to maximise the evolutionary variation we keep.

The paper also released the first formal list of ‘EDGE birds’ – EDGE stands for “Evolutionary Distinctive and Globally Endangered” and is a metric combining ED with the IUCN Red List. The list includes the Giant Ibis, the New Caledonian Owlet-Nightjar, the California Condor, the Kakapo, the Philippine Eagle, the Christmas Island Frigatebird and the Kagu, all of which are listed as either Critically Endangered or Endangered.

The most evolutionary distinct birds include both common species and rare species, both isolated and wildly distributed species, and are found in almost every environment on Earth. Current conservation efforts that focus on tropical regions with high species richness may be neglecting many evolutionary distinct species, whose extinction would represent the loss of a great deal of ‘evolutionary information’. Evolutionary distinctiveness could offer a powerful tool to supplement current criteria for identifying conservation priorities.

Original Article:

() Current Biology

nerc-logo-115nsf1nserc_logo_eNasa-logo

This research was made possible by funding from the Natural Environment Research Council (NERC), the Natural Sciences and Engineering Research Council (NSERC), the National Science Foundation, and the National Aeronautics and Space Administration (NASA)

Summer Science Events

By Claire Asher, on 17 July 2013

July has been an exciting month for science shows – The Royal Society Summer Exhibition ran from the 2nd to the 7th at Carlton House in London, and on Friday 5th July, Soapbox Science took to the south bank for it’s third annual event celebrating women in science.

DSC03524 DSC03626

Technology for Nature. Dr Robin Freeman (UCL, ZSL) demonstrates Mataki technology

At this year’s Royal Society Summer Exhibition, Technology for Nature, a joint project between UCL, Imperial College London, Microsoft Research and the Zoological Society of London, held a successful stall demonstrating a number of applications of technology to ecology and conservation. A particular highlight was the demo for Mataki, a new tracking technology which can detect behavioural information as well as locational information from a small tracking device attached to an animals back. This technology is being used to monitor the movement and foraging behaviour of sea birds. Professor Kate Jones and Dr Robin Freeman were amongst demonstrators during the week, talking to the public.

“We have a pressing need to better assess the behaviour, distribution and status of many species, and new technologies provide new ways to achieve this. From recording the dynamic behaviour of animals in the wild, to better assessments of distribution and diversity – within the Technology for Nature unit we’re developing and using new technological innovations to understand the natural world on which we rely.”
– Dr Robin Freeman (UCL CoMPLEX, Zoological Society of London)

Now in its 10th year, the Royal Society Summer Science Exhibition is an annual event showcasing cutting-edge research from around the UK. Each year, teams of scientists congregate in London hoping to demonstrate and communicate their science to the public, to students and fellow scientists, to policy-makers and the media. With interactive demonstrations, along with evening events and talks, the Royal Society Summer Science exhibition is a highlight of the year. This year, 24 Universities were selected to bring their scientific innovations to the exhibition, covering topics as diverse as dark matter, glacial melting, antibiotics and ecological monitoring. UCL’s Technology for Nature, in collaboration with Imperial College, ZSL and Microsoft Research, demonstrated three of their innovative projects aiming to apply technological advances to ecological problems.

DSC03506

One of the highlights of the Technology for Nature stand was the Mataki demonstration, that had members of the public step into the shoes (wings?) of seabirds to test out the revolutionary technology that can not only track animals, but also monitor behaviour. The small, light weight, economical tracking device produces data that enables different types of flight and foraging behaviour to be identified.

Robin Freeman, a research fellow in UCL’s CoMPLEX and head of the Indicators and Assessments unit at ZSL, helped develop the technology: “The Mataki platform provides an open, low-cost tool that researchers can use to record animal movement and behaviour in the wild. By providing a powerful tracking technology in a small, low-cost package, I hope that more researchers are able to gather the rich data that we need to understand the changing behaviour of animals in the wild.”

DSC03624 DSC03515

Professor Kate Jones (UCL, ZSL) and Dr Robin Freeman (UCL, ZSL) engage with the public to demonstrate Technology for Nature

Professor Kate Jones, from UCL’s Center for Biodiversity and Environment Research, has been working on a number of projects aimed at improving the ease of detecting and identifying bats, and utilising crowd-sourcing as a means to tackle large data sets generated by such technology.

“Developing easily accessible tools with which to identify wild species is critical to engage more people with the natural world and to monitor any changes. Imagine a world where you could hold up your smartphone when you hear a bird call and it would identify the species – like a Shazam app for biodiversity. We are still a way from that point yet but we are progressing with such tools for bats where the first stage is to develop an online tool that can identify bat echolocation calls. We are now developing that into a smartphone application”
– Professor Kate Jones (UCL CBER)

Find out more about the Technology for Nature project.

Soapbox Science

DSC03576

Julie Dunne (Bristol University)
talking about the history of dairy
consumption.

As the long awaited summer finally arrived in London, so did 12 of the UK’s top female scientists, ready to communicate their science to the public in one of London’s most unusual science events – Soapbox science. Here, scientists are challenged to enthuse, entertain and educate a diverse audience about their research, without the aid of powerpoint slides and scientific jargon. Armed with nothing more than a few props, a Soapbox and a lot of enthusiasm, this years inspiring female scientists were challenged to explain their research to the public.

Soapbox science is a collaboration between the Zoological society of London and L’Oréal-UNESCO For Women in Science, which aims to highlight the struggles faced by women pursuing a career in science and challenge the public’s view of women in science. Soapbox science was created by Dr Seirian Sumner and Dr Nathalie Pettorelli, hoping to inspire a new generation of female scientists.

DSC03556

Professor Laura Piddock talks about antibiotic resistance, and Dr Emily Cross demonstrates how the human brain perceives complex movement.

Co-organiser, Dr Nathalie Pettorelli (Zoological Society of London) says: “Now in its fourth year, Soapbox Science is a platform to showcase the most eminent female scientists in the UK, and to highlight some very serious issues that we have witnessed as mid-career scientists: the disappearance of our female peers”. Dr Seirian Sumner (Bristol University) adds “Through events like Soapbox Science and our Campaign for Change, we want to actively bring women of all career stages together and promote that women can have a career in science”.

This year’s Soapbox scientists covered topics ranging from gut bacteria to the neuroscience of dance, from computing to antibiotics. Find out more about Soapbox Science

DSC03617 DSC03552

Soapbox Science in Gabriels Wharf. Dr Zoe Schnepp (University of Birmingham) explains superconducting seaweed and green nanotechnology.

Biological Traits Influence Vulnerability to Climate Change in Birds, Amphibians and Corals

By Claire Asher, on 25 June 2013

Climate change is fast becoming a reality, and with temperature rises of between 0.8°C and 2.6°C predicted over the next 35 years, biodiversity will certainly be impacted, with many species set to suffer declines or potential extinction. But all species are not equal and certain traits may make species more or less vulnerable to climate change than others. A new model presented in PLOS one this month investigates the impact of biological traits, such as physiology, ecology and evolutionary history, on vulnerability to climate change for some of the most threatened groups: birds, amphibians and corals. Around 10% of species are both highly vulnerable to climate change, and already listed as threatened with extinction. The model also identifies potentially vulnerable species for future conservation priorities, giving biologists a head-start in trying to slow the inevitable loss of biodiversity that climate change will bring.

Many researchers are interested in predicting how biodiversity might respond to climate change. Biodiversity is essential to human survival – diverse, functional ecosystems provide us with food, water and medicine. However, predicting how ecosystems might respond to changes in temperature and rainfall is a complicated matter. Most previous models have considered the availability of suitable habitat for species based upon their current range and predictions of temperature changes. However, not all species are created equal – biological traits of individual species are likely to play an important role in determining species survival. For example, some species are adapted to a very specialised habitat or are poor as dispersal and so may struggle to find alternative habitats even if they are available. Other species have long generation times and produce few young, or have very limited genetic diversity in the population, making adaptation to new habitats more difficult. Species like these are likely to be more vulnerable to climate change than generalists who are good at dispersal and produce lots of offspring. Not considering the biology of a species when modelling responses to climate change can lead to under- or over-estimations of how vulnerable a species actually is.

Accounting for Biology
To address this issue, Foden and colleagues, working in collaboration with Professor Georgina Mace from CBER, developed a systematic framework for assessing species vulnerability to climate change, and applied this model to three of the best-studied, and most endangered groups of animals: birds, amphibians and corals. They considered three factors – sensitivity (whether a species can survive where it is), exposure (the predicted extent of change under climate models), and adaptive capacity (whether a species can avoid the negative impacts of climate change by moving or evolving).

The components of species vulnerability - sensitivity, adaptive capacity and exposure

Components of species
vulnerability – sensitivity, adaptive
capacity and exposure

In consultation with extinction risk specialists, they identified 90 biological, ecological, phsyiolocial and environmental traits which are likely to influence vulnerability to climate change. In particular, they identified habitat specialisation, rarity, environmental tolerance, disruption of environmental triggers and interactions with other species as key components of species sensitivity to climate change. Adaptive capacity is composed of dispersal ability, barriers to dispersal, genetic diversity, generation length and reproductive output. They assessed these traits for each of 16,857 species of bird, amphibian and coral, across the globe.

The proportion of species in a region that are sensitive or have limited adaptive capacity (blue), high exposure to climate change (yellow) or both (maroon).

The proportion of species in a region that are sensitive or have limited adaptive capacity (blue), high exposure to climate change (yellow) or both (maroon).

Armed with these traits, they were able to determine sensitivity, adaptive capacity and exposure for each species, and generated maps of where species may be particularly vulnerable. They found that around 24% – 50% of bird species, 22% – 44% of amphibians and 15% – 32% of corals are both sensitive and exposed, and have limited capacity to adapt. They identified the Amazon region as containing many highly vulnerable birds and amphibians. Many bird species were also highly vulnerable in central Eurasia, the Congo basin, the Himalayas, Malaysia and Indonesia, with amphibians most vulnerable in north Africa, eastern Russia, and the northern Andes. The waters around Malaysia, Indonesia and the Philippines were hot-spots for highly vulnerable corals.

A Silver Lining
It’s not all doom and gloom, though. The study also identified some species and regions where species’ traits may make them more able to cope with climate change. Around 28% -53% of bird species, 23% – 59% of amphibians and 30% – 55% of corals may survive projected climate changes because of their inherent ability to disperse or adapt to change. In particular, southern Asia and North America may see less severe biodiversity declines than previously thought.

The interplay between climate change and biodiversity is complex, and unlikely to be uniform across taxonomic groups. It is important to consider the physiological, ecological and evolutionary traits of individual species when making predictions about the impact of climate change. This study considered the effects of temperature and rainfall changes, as well as ocean acidification and sea-level rise, on global biodiversity. However, many other factors will influence whether species survive over the long-term – habitat destruction, invasive species and pollution are also major drivers of extinction which need to be taken into account when predicting the future of a species. Taking into account the biology of a species, and it’s interaction with other species, is a major step forward in our understanding of how biodiversity will respond to the impending climate changes that are now inevitable.

Original Article:

This research was made possible by funding from the MacArthur Foundation.