X Close

GEE Research

Home

Research in Genetics, Evolution and Environment

Menu

Award-Winning Bat Conservation

By Claire Asher, on 16 September 2013

This year’s Vincent Weir Scientific award for bat conservation biology has been awarded to GEE’s Charlotte Walters for her PhD work on the iBatsID tool.

The Vincent Weir Scientific Award is an annual award given to a UK-based student for their outstanding contribution to the conservation biology of Bats. It is awarded by the Bat Conservation Trust (BCT), a national organisation devoted to the conservation of bats and their habitats within the UK. Charlotte Walters, who recently completed her PhD with the Zoological Society of London (ZSL), University College London (UCL), University of Kent and BCT, has been awarded the prize for her contribution to bat conservation and particularly her work for the Indicator Bats Program (iBats).

iBats is a partnership between ZSL and BCT, aiming to monitor global changes in bat biodiversity and provide valuable data for policy makers and conservation groups. They provide training and equipment to projects monitoring bat biodiversity to ensure standardised methodology which will enable global comparisons. They have also developed a number of free tools for iPhone and Android which enable fast, simple and efficient detection and identification of bats, and Charlotte’s iBatsID program is a key part of this.

Myotis bechsteini
Image Credit: Gilles San Martin, used under creative commons licence.

During her PhD, Charlotte developed the iBatsID tool, an automatic tool for acoustic identification of European bat ecolocation calls. The tool is able to identify 34 different species of bat based on their calls alone, and is enabling scientists to achieve consistent monitoring of bat populations across Europe. The tool uses ensembles of artificial neural networks to classify bat echolocation calls and identify which species or group the call belongs to. Dr Karen Haysom (Director of Science, BCT) says “New tools and techniques to assist monitoring help us find out more about these fascinating and vulnerable creatures, [and] Charlotte particularly impressed the judges with the innovation and technical quality of her research”.

Eptesicus nilssonii

Bats are ecologically important, playing a key role as predators and seed dispersers. They are also very sensitive to human activities, and are useful as ‘indicator species’ for monitoring biodiversity patterns in general. In Europe, all 52 species of Bat are protected by law as part of the “Agreement on the Conservation of Populations of European Bats“. However, being nocturnal and generally small, they are difficult to detect visually or by trapping. Recording bat calls can allow researchers to survey difficult habitats and gain a clearer picture of what bat species are present and in what numbers. But a standardised statistical method for identifying the species of bat based upon it’s call was needed. This has previously been difficult to achieve, but the recent publication of a global library of bat calls, EchoBank, enabled this type of large-scale identification project to be attempted.

Bat calls vary between species and have been shaped by natural selection relating to species’ ecology. However, calls also vary between individuals within a species according to sex, age, habitat and geographical location, and social environment. Bats also vary their calls depending on what they’re doing – calls are longer when a bat is searching for prey and become shorter as it narrows in on it’s target. So, identifying a species by it’s call is a little more complex than one might expect. Charlotte developed an artificial neural network which was trained on calls of known species and can then be used to identify new calls recorded in the field.

Example of an Artificial Neural Network
Image by Chrislb, used under creative commons licence.

Artificial neural networks are computer models inspired by the central nervous system of animals. They are represented as an interconnected set of ‘neurons’, each of which makes simple calculations which together generate complex behaviour. Artificial neural networks are ‘trained’ first and this training determines the simple algorithms performed by each neuron. The trained network can then be used on real data. In the case of iBats, this involves training the network using calls for which the bat species is known, and the finished neural network can then be used to estimate which species an unknown recorded call belongs to. ANNs are a form of computer learning, and will improve in their accuracy with training – the network of neurons is able to ‘learn’ from it’s mistakes and refine the algorithm to improve classification. This method proved to be highly accurate; 98% of calls from 34 species can be accurately classified into a ‘call-type’ group, and 84% can be classified to species-level.

The iBatsID tool is freely available online, enabling researchers to utilise a standardised methodology for identifying bat species across Europe. This will facilitate large-scale comparative studies and will be particularly useful for studying European bats that have a large geographical range or are migratory. This data will be important for making conservation decisions for the future, and is therefore crucial for bat conservation but also for biodiversity monitoring in general, as bats can provide an accurate assessment of the health of entire biological communities.

Original Article:

() Journal of Applied Ecology

logo-bct

This research was made possible by funding from the Natural Environment Research Council (NERC) and the Bat Conservation Trust

Summer Science Events

By Claire Asher, on 17 July 2013

July has been an exciting month for science shows – The Royal Society Summer Exhibition ran from the 2nd to the 7th at Carlton House in London, and on Friday 5th July, Soapbox Science took to the south bank for it’s third annual event celebrating women in science.

DSC03524 DSC03626

Technology for Nature. Dr Robin Freeman (UCL, ZSL) demonstrates Mataki technology

At this year’s Royal Society Summer Exhibition, Technology for Nature, a joint project between UCL, Imperial College London, Microsoft Research and the Zoological Society of London, held a successful stall demonstrating a number of applications of technology to ecology and conservation. A particular highlight was the demo for Mataki, a new tracking technology which can detect behavioural information as well as locational information from a small tracking device attached to an animals back. This technology is being used to monitor the movement and foraging behaviour of sea birds. Professor Kate Jones and Dr Robin Freeman were amongst demonstrators during the week, talking to the public.

“We have a pressing need to better assess the behaviour, distribution and status of many species, and new technologies provide new ways to achieve this. From recording the dynamic behaviour of animals in the wild, to better assessments of distribution and diversity – within the Technology for Nature unit we’re developing and using new technological innovations to understand the natural world on which we rely.”
– Dr Robin Freeman (UCL CoMPLEX, Zoological Society of London)

Now in its 10th year, the Royal Society Summer Science Exhibition is an annual event showcasing cutting-edge research from around the UK. Each year, teams of scientists congregate in London hoping to demonstrate and communicate their science to the public, to students and fellow scientists, to policy-makers and the media. With interactive demonstrations, along with evening events and talks, the Royal Society Summer Science exhibition is a highlight of the year. This year, 24 Universities were selected to bring their scientific innovations to the exhibition, covering topics as diverse as dark matter, glacial melting, antibiotics and ecological monitoring. UCL’s Technology for Nature, in collaboration with Imperial College, ZSL and Microsoft Research, demonstrated three of their innovative projects aiming to apply technological advances to ecological problems.

DSC03506

One of the highlights of the Technology for Nature stand was the Mataki demonstration, that had members of the public step into the shoes (wings?) of seabirds to test out the revolutionary technology that can not only track animals, but also monitor behaviour. The small, light weight, economical tracking device produces data that enables different types of flight and foraging behaviour to be identified.

Robin Freeman, a research fellow in UCL’s CoMPLEX and head of the Indicators and Assessments unit at ZSL, helped develop the technology: “The Mataki platform provides an open, low-cost tool that researchers can use to record animal movement and behaviour in the wild. By providing a powerful tracking technology in a small, low-cost package, I hope that more researchers are able to gather the rich data that we need to understand the changing behaviour of animals in the wild.”

DSC03624 DSC03515

Professor Kate Jones (UCL, ZSL) and Dr Robin Freeman (UCL, ZSL) engage with the public to demonstrate Technology for Nature

Professor Kate Jones, from UCL’s Center for Biodiversity and Environment Research, has been working on a number of projects aimed at improving the ease of detecting and identifying bats, and utilising crowd-sourcing as a means to tackle large data sets generated by such technology.

“Developing easily accessible tools with which to identify wild species is critical to engage more people with the natural world and to monitor any changes. Imagine a world where you could hold up your smartphone when you hear a bird call and it would identify the species – like a Shazam app for biodiversity. We are still a way from that point yet but we are progressing with such tools for bats where the first stage is to develop an online tool that can identify bat echolocation calls. We are now developing that into a smartphone application”
– Professor Kate Jones (UCL CBER)

Find out more about the Technology for Nature project.

Soapbox Science

DSC03576

Julie Dunne (Bristol University)
talking about the history of dairy
consumption.

As the long awaited summer finally arrived in London, so did 12 of the UK’s top female scientists, ready to communicate their science to the public in one of London’s most unusual science events – Soapbox science. Here, scientists are challenged to enthuse, entertain and educate a diverse audience about their research, without the aid of powerpoint slides and scientific jargon. Armed with nothing more than a few props, a Soapbox and a lot of enthusiasm, this years inspiring female scientists were challenged to explain their research to the public.

Soapbox science is a collaboration between the Zoological society of London and L’Oréal-UNESCO For Women in Science, which aims to highlight the struggles faced by women pursuing a career in science and challenge the public’s view of women in science. Soapbox science was created by Dr Seirian Sumner and Dr Nathalie Pettorelli, hoping to inspire a new generation of female scientists.

DSC03556

Professor Laura Piddock talks about antibiotic resistance, and Dr Emily Cross demonstrates how the human brain perceives complex movement.

Co-organiser, Dr Nathalie Pettorelli (Zoological Society of London) says: “Now in its fourth year, Soapbox Science is a platform to showcase the most eminent female scientists in the UK, and to highlight some very serious issues that we have witnessed as mid-career scientists: the disappearance of our female peers”. Dr Seirian Sumner (Bristol University) adds “Through events like Soapbox Science and our Campaign for Change, we want to actively bring women of all career stages together and promote that women can have a career in science”.

This year’s Soapbox scientists covered topics ranging from gut bacteria to the neuroscience of dance, from computing to antibiotics. Find out more about Soapbox Science

DSC03617 DSC03552

Soapbox Science in Gabriels Wharf. Dr Zoe Schnepp (University of Birmingham) explains superconducting seaweed and green nanotechnology.