X Close

Centre for Education Policy and Equalising Opportunities (CEPEO)

Home

We create research to improve the education system and equalise opportunities for all.

Menu

Hello world! The CEPEO Blog

By IOE Editor, on 2 February 2020

The CEPEO Blog

Welcome to the Centre for Education Policy and Equalising Opportunities (CEPEO) blog.  This blog is a forum for staff, students, alumni and guests to write about and around CEPEO’s four thematic areas of research and engagement.

Our focus areas

The Centre concentrates around four thematic areas, each underpinned by the aim to improve the education system and equalise opportunities for all. These include:

Ethnicity Pay Gaps and Getting Stupid Answers

By IOE Editor, on 4 May 2021

By Paul Gregg

The old saying is that “If you ask a stupid question, you get a stupid answer”. The government-sponsored report from the Commission on Ethnic and Racial Disparities does just this on ethnic pay gaps. The central point is about comparing like-with-like when considering access to better-paying jobs in Britain. This blog post starts with a balanced assessment of what ethnic pay gaps in Britain actually look like, before explaining why the ONS analysis that the Commission draws on gets it so wrong.

Ethnic pay gaps from the Labour Force Survey

If we estimate the average (mean) pay gap between a Black, Asian, or Minority Ethnic (BAME) person and their White counterpart, living in the same region, and with similar educational achievement, using the nationally representative Labour Force Survey (LFS) of all with positive earnings, we find an ethnic pay gap of 14%. So similarly educated BAME people from the same place earn 14% less than White people. This is almost exactly the same pay gap as that found between men and women, and for those born into less advantaged families, compared to those born to more affluent families, again given the same educational achievement. The British labour market creates massive inequality of opportunity between people achieving the same education, across ethnicity, gender, and family background.

How does this compare with the Commission findings?

So the ethnic pay gap comparing like with like is 14%. So how on earth did the Commission come up with a 2.3% gap? There are two major parts to this.

The first is region people live in. The ONS report that the Commission draws on does not compare people in the same region. But ethnic minorities are not evenly spread across the country. They live disproportionately in London, the South East and major cities like Birmingham and Manchester. These are areas with higher pay but also higher living costs, especially in terms of housing costs. This 2.3% gap is comparing pay of BAME groups living in high-cost London to White populations living in low-cost Wales and the North East of England etc. This doesn’t make sense. One approach to make this more comparable would be to adjust for housing costs of where people live, but the easier approach is to compare BAME Brummies to White Brummies, and BAME Londoners to White Londoners – i.e. to compare BAME and White people living in the same region. Instead, this study gives a region-by-region breakdown of the ethnic pay gap, which is indicative of a pay gap between white and BAME groups, irrespective of where people live, of around 7%. This is one step closer to a balanced assessment but was not headline given by the Commission.

Well Paid Jobs

The second issue needs a little more explanation. Britain’s jobs have a wide distribution of pay levels. The minimum wage means that pay differences at the bottom are not that great. Pay of the person in the middle of the pay distribution was £13.68 Per Hour in 2020 (pre-pandemic). This is where ½ the employed population earn more and half less – the median.  Low paid people earn between £8.50 and £9 per hour (so a little above 60% of the median). One quarter earns more than 1.5 times this median figure, 10% earn more than 3 times this, and 5% more than 7 times. In other words, there are a small minority of jobs with extremely high pay. These are in law, business, and finance predominantly.

The ONS analysis which the Commission draws so heavily on, completely ignores access to these top jobs, because it measures pay gaps using– the pay gap between the person in the middle of the White earning distribution and the middle of the BAME one. This excludes differences in access to high paying jobs from the analysis. The average based on the mean (which is what all people think of as the average) rather than median, assesses the gap across all jobs. Doing this moves the pay gap from 7% or so for people in the same regions to 13%. Surely any assessment of disparities in opportunity would include access to the elite jobs in society as well as more typical jobs. It has to – to do otherwise is just stupid. The point is well made in the report in looking at BAME groups in the Civil Service (Figure 9, p12). Across departments as a whole, about 15% of staff are from BAME groups. But in senior roles, the number is half of this. Ethnic minorities of equal educational attainment systematically do not get opportunities leading to Britain’s higher-paying jobs.

Education

Educational achievement, as highlighted by the Commission report, has been a huge success story, educational levels in the BAME community are now a little higher than in the White population. Adjusting for this too, to compare Black and White with the same education to look at disparities in opportunities, pushes the pay gap up a little further to 14%. Comparing individuals with the same education, therefore, is making very little difference to the pay gap, as you would expect. The inequalities of opportunity lie beyond education in the labour market.

Britain’s ethnic minorities are well educated but are not progressing in the labour market to the highest paid jobs.  Yet a key report on ethnic disparities in opportunities chooses to assess pay gaps in a way that ignores this entirely. How stupid is that?

The challenges of COVID-19 for young people need a new cohort study: introducing COSMO 

By IOE Editor, on 23 April 2021

Jake Anders and Carl Cullinane 

The COVID-19 pandemic and its impact is a generation-defining challengeOne of its most concerning aspects, particularly in the long term, is the already profound effect it has had on young people’s lives. Disruption to their development, wellbeing and education could have substantial, long-lasting effects on later life chances, particularly for those from lower-income homesEvidence is already showing disadvantaged pupils lagging 5 months behind their peers. This poses a unique challenge for educational policy and practice, with the scale of the disruption requiring solutions to match that scale.  

In order to address these impacts, it is vital that we fully understand these effects, and in particular, the disproportionate burden falling on those from certain groups, including those from lower socio-economic backgrounds and minority ethnic groups. This needs high-quality data. Recovering from the effects of the past 12 months will be a longterm project, and to reflect this we need research of similar ambition. 

The COVID Social Mobility and Opportunity Study (COSMO for short), launched today, seeks to play this role, harnessing the power of longitudinal research to capture the experiences of a cohort of young people for whom the pandemic has had an acute impact, and its effects on their educational and career trajectories. 

This country has a grand tradition of cohort studiesincluding the pioneering 1958 National Child Development Study and the 1970 British Cohort StudySuch studies are a key tool in understanding life trajectories and the complex factors that shape them. And they are particularly vital when it comes to measuring the impact of events that are likely to last through someone’s life course. The existing longitudinal studies, including those run by our colleagues in the UCL Centre for Longitudinal Studies, have played a huge role in understanding the impacts of the pandemic on society in the last year. 

But there is a key gap in the current portfolio of cohort studies: and that is the generation of young people at the sharp end of their school education, who would have taken GCSEs this summer, and within a matter of months will be moving onto new pathways at sixth form, further education, traineeships and apprenticeships. The impacts on this group are likely to be profound and long-lasting, and understanding the complex elements that have aggravated or mitigated these impacts is crucial. 

A variety of studies have already collected some such data, providing emerging evidence of inequalities in pupils’ outcomes and experiences of remote schooling. This has highlighted alarming challenges for pupils’ learning and wellbeing. However, to develop a full understanding we require the combination of rich, representative, survey data on topics such as learning loss experiences, wellbeing, and aspirations, linked with administrative data on educational outcomes, and concurrent interventions. We also need to follow up those young people over the next few years as they pass through key stages of education and their early career, to understand what has happened next, ideally long into their working lives. 

Such evidence will be key in shaping policies that can help to alleviate the longterm impacts on young people. Which groups have suffered most and how, how long will these impacts persist, and how can we reduce their effect. These will be fundamental questions for national policymakers, education providers, employers and third sector organisations in the coming years, both in the UK and internationally. 

That’s why we’re extremely excited to be launching COSMO with funding from UK Research and Innovation (UKRI)Ideas to Address COVID-19 response fundOur study will deliver exactly that data over the coming years, helping to inform future policy interventions that will be required, given that the huge effects of the pandemic are only just beginning. As the British Academy pointed out on the anniversary of the first COVID lockdown – this is not going to go away quickly. 

Beginning this autumn, the study will recruit a representative sample of 12,000 current Year 11 pupils across England, with sample boosts for disadvantaged and ethnic minority groups plus targeting of other hard-to-reach groups. Young person, parent, and school questionnaires – enhanced with administrative data from DfE– will collect rich data on young people’s experiences of education and wellbeing during the past challenging 12 months, along with information on their transitions into post-16 pathways via this summer’s unusual GCSE assessment process. 

The study is a collaboration between the UCL Centre for Education Policy & Equalising Opportunities (CEPEO), the UCL Centre for Longitudinal Studies (CLS) and the Sutton Trust. The study will harness CEPEO’s cutting-edge research focused on equalising opportunities across the life course, seeking to improve education policy and wider practices to achieve this goal. The Sutton Trust also brings 25 years of experience using research to inform the public and achieve policy change in the area of social mobility.  

COSMO will also be part of the family of cohort studies housed in the UCL Centre for Longitudinal Studies, whose expertise in life course research is world-renowned. We are also working closely with Kantar Publicwho will lead on delivering the fieldwork for this large study, alongside NatCen Social Research. More broadly still, all our work will be co-produced with project stakeholders including the Department for Education and the Office for Students. We are also working with partners in Scotland and Wales to maximise comparability across the nations. 

We are excited for COSMO to make a big contribution both to the landscape of educational research and to the post-pandemic policy environment, and we are delighted to be getting to work delivering on this promise over the coming years. 

We won’t reduce inequalities in post-16 progression until we make ‘lower attainers’ more visible

By IOE Editor, on 29 March 2021

By Ruth Lupton, Stephanie Thomson, Lorna Unwin and Sanne Velthuis

Inequalities in post-16 progression

The continued use of GCSEs as a blunt instrument for dividing pre-and post-16 education is one of the main causes of inequality in the English system, with impacts extending well into adulthood. The system asks the least confident, least academically successful young people, often (but not always) facing greater social and economic disadvantages, to make the most complex, life-shaping choices at the youngest age.  Contemporaries with high academic attainment can progress more straightforwardly in a simpler, better understood, and historically better-funded system, often postponing decisions about occupational directions until age 18, 19 or later.

In our new research, funded by the Nuffield Foundation, we investigated the post-16 trajectories of young people who we described as ‘lower attainers’ – the 40% of each GCSE cohort who annually do not achieve a grade 4 (formerly C) in both English and maths.  We presented our findings at a recent CEPEO webinar.

Our research employed a mixed-methods approach combining analysis of data from the National Pupil Database (NPD) and Individualised Learner Record (ILR), collection and analysis of local data about course and apprenticeship opportunities and entry requirements, and interviews and focus groups.

It shows how, in making the transition to the post-16 phase and attempting to progress beyond GCSEs, ‘lower attainers’ face multiple barriers including: inconsistent careers information and guidance; restrictive entry requirements that are often based on English and maths GCSEs (even when it is not clear why specific grades are needed); considerable local variation in accessible provision; and the low availability and poor visibility of apprenticeships. Apprenticeships are not the accessible pathway for ‘lower attainers’ that many people imagine, with only 5.8% moving into an apprenticeship at 16 in the 2015 cohort, for example.

It also shows that many young people start their post-16 phase on courses below the levels of learning they have already achieved and that learners with similar attainment at 16 enter the post-16 phase at different levels in different places, partly due to local differences in the mix of provision and institutional practices. This has potential repercussions for the achievement of Level 2 and Level 3 qualifications between 16 and 18/19.

Making the problems and solutions more visible

All this points to a complex and locally variable picture that needs to be better understood.  But achieving clarity and understanding is very difficult due to the way attainment is measured and administrative data is collected, organised and made accessible.

Published statistics do not make the achievements and trajectories of lower attaining young people very visible, probably because much of the policy focus to date has been on raising KS4 attainment at the standard benchmarks. Coverage of lower-level qualifications (and of spatial variations) still lags behind.

And beyond the published statistics, there are major problems with the capacity for detailed analysis of the underlying data.

One issue is the data itself. Currently, we have two different large-scale administrative datasets for the post-16 phase – the NPD and ILR – with different definitions, variables and standards of documentation, and including different learners.  Getting access to these involves a lengthy and difficult application procedure, and working with the data to summarise what learners are doing and achieving is a painstaking process. Looking at academic routes is easier than tracking routes through vocational courses and apprenticeships because matching NPD (Key Stage 4) to NPD (Key Stage 5) is easier than matching NPD to ILR.  It is easier to look at outcomes than it is to understand progress and what learners are actually doing.  So analysis often focuses on qualifications achieved as the data is collected in this way.  We tried a different approach.  We developed a measure of a learner’s ‘main level of learning’ – the level that they were spending most of their guided learning hours on – and thus were able to illuminate progression (or not) from levels already achieved.  If the data sources were easier to access and use, much more could be done to analyse and explain course changes and progression between 16 and 19 and to understand what constitutes success and progress.

At a local level, basic information on the system in terms of the nature of provision at any given time as well as associated entry requirements is not routinely collected. To shed light on these issues, we had to collect and aggregate this information from provider and national agency websites, a labour-intensive task. The lack of available data leaves policy-makers unsighted as to what is on offer, who is missing out, and which gaps need to be plugged.

The other issue is analytic capacity.  Even if there were better data, there is a paucity of academics with interests and expertise in further education and training compared with the numbers working on school and higher education research. And we need more research teams who can combine quantitative and qualitative methods to investigate the relationship between the pre and post-16 phases. Changing this now will require not just funding for projects and centres but investment in early-career scholarship, addressing status issues and links to teaching. And there are insufficient links between people who have the skills for data analysis and practitioners who understand how the system works on the ground. Cuts to local authority funding have further diminished local capacity and intelligence.

Thus, if the characteristics and trajectories of lower attainers at GCSE are to be better understood on an ongoing basis, three substantial changes will need to be made:

  • Routine reporting of sub-benchmark achievement in more detail, and at relevant subnational scales.
  • Improvement in data infrastructure and access.
  • Increase in research and analysis capacity, both in local government and in universities and research institutes, and better links between them.

These will not be cheap.  But if the government is serious about eroding the long-standing inequalities in post-16 progression, it simply must invest in making the situation more visible.

The research reported here was funded by the Nuffield Foundation, but the views expressed are those of the authors and not necessarily the Foundation. Visit www.nuffieldfoundation.org

How is school accountability linked to teacher stress?

By IOE Editor, on 18 March 2021

England’s school system has a high level of accountability – and a high level of accountability-related stress.

By John Jerrim

This blog post reports findings from Nuffield Foundation-funded research conducted into teacher health and wellbeing.

It is no secret that many in education dislike certain aspects of England’s school accountability system. Indeed, accountability is often blamed for causing high-levels of stress among the teacher workforce.

Yet we know surprisingly little about the link between accountability and teacher wellbeing.

This blogpost – based upon a new research paper I am publishing with colleagues today – looks at international evidence on this issue from TALIS 2018. (TALIS is the OECD’s Teaching and Learning International Survey.)

Do high accountability school systems have teachers who are more stressed about this aspect of their job?

As part of TALIS, teachers were asked how much stress was caused by different aspects of their job. This included “being held responsible for pupil achievement” – i.e. accountability.

In another international survey, PISA, headteachers were asked various questions about accountability, such as how school assessment data is used, whether school examination results are made publicly available (e.g. school league tables) and if there is a school inspectorate (e.g. Ofsted).

Using this data, we have created a “school accountability” scale, capturing the extent of school accountability systems used across the world. Countries receive a score between -1 and +1, where a higher number corresponds to more accountability measures.

In the chart below, the extent of accountability in the school system is plotted along the horizontal axis and the percentage of teachers who feel stressed about accountability on the vertical axis.

There are two key points of note.

First, England sits towards the top-right hand corner: we have lots of accountability in our school system, and also a lot of accountability-driven stress among teachers. (68% of teachers in England report feeling accountability-related stress, compared to a cross-country average of around 45%).

Second, there is a positive cross-national correlation, though this is relatively weak (the correlation coefficient is around 0.3). In other words, teachers do tend to be more stressed about accountability in countries where there is more accountability within the school system. Yet this relationship is not that strong – and certainly not deterministic.

For instance, there are countries with systems of school accountability similar in extent to England’s – most notably New Zealand and the United States – where teachers are a lot less likely to be stressed by this part of their job.

Now, as I have written before, results from such cross-national analyses need to be treated very carefully. The chart above should be treated as a conversation starter, rather than being used as ‘proof’ of anything more.

It does nevertheless raise important questions about the pros and cons of England’s current system of school accountability. In particular, do we have the right balance between quality assurance of schools and ensuring that this does not stress teaching staff out?

How is accountability-induced stress among teachers linked to the stress felt by headteachers?

Within our paper, we also consider how stress-induced by accountability is shared among staff within the same school.

For instance, do teachers feel more stressed about accountability when their boss – headteachers – feel stressed about this part of the job as well?

As the chart below, which relates to all TALIS countries, indicates, the answer is to some extent ‘yes’. Specifically, in comparison to teachers whose head does not feel stressed by accountability at all, teachers are around seven percentage points more likely to feel stressed by accountability if their headteacher says they feel ‘a lot’ of stress about this part of their job as well. To put this figure into context, on average across countries, approximately 45% of teachers say that they feel stressed by accountability.

So, there is indeed a relationship. But the difference is not particularly strong.

Accountability-induced stress is – to some extent – concentrated within particular schools.

Our analysis has also considered whether teachers are more likely to feel stressed about accountability if their colleagues (i.e. other teachers within their school) feel stressed by accountability as well.

Here, we found strong evidence of a positive relationship. For instance, again looking across all TALIS countries, a teacher is twice as likely to say that they feel stressed by accountability if their colleagues also feel stressed by this part of their job.

In other words, there are some schools where the stress caused by accountability is a particularly big problem that needs to be addressed.

We still need to know much more

So, England is a high-accountability, high-accountability stress country. We know there is a modest link between the stress of headteachers and the stress of their staff. And, to some extent, the problem of accountability-induced stress is clustered among teachers working within specific schools.

Yet, for all the talk about how school league tables and Ofsted inspections negatively affect teachers, we still know relatively little about the pros and cons of England’s extensive system of school accountability.

With the recent pause in many aspects of the school accountability system in England due to the Covid-19 crisis, now could be the ideal time for policymakers to take a moment and consider whether we have the right quality assurance mechanisms in place within our schools.

The project has been funded by the Nuffield Foundation, but the views expressed are those of the authors and not necessarily the Foundation. Visit www.nuffieldfoundation.org.

Vaccine hesitancy in children and young adults in England

By IOE Editor, on 17 March 2021

By Patrick Sturgis, Lindsey Macmillan, Jake Anders, Gill Wyness

Children and young people are, mercifully, at extremely low risk of death or serious illness from the coronavirus and, for this reason, they are likely to be the last demographic in the queue to be vaccinated, if they are vaccinated at all. Yet, there are good reasons to think that a programme of child vaccination against covid-19 will eventually be necessary in order to free ourselves from the grip of the pandemic. In anticipation of this future need, clinical trials assessing the safety and efficacy of existing covid-19 vaccines on young people have recently commenced in the UK.

While children and young people experience much milder symptoms of covid-19 than older adults, there is currently a lack of understanding of the long-term consequences of covid-19 infection across all age groups and there have been indications that some children may be susceptible to potentially severe and dangerous complications. Scientists also believe that immunisation against covid-19 in childhood may confer lifetime protection (£), reducing the need for large-scale population immunisation in the future.

Most importantly, perhaps, vaccination of children may be required to minimise the risk of future outbreaks in the years ahead. If substantial numbers of adults refuse immunisation and the vaccines are, as seems likely, less than 100% effective against infection, vaccination of children will be necessary if we are to achieve ‘herd immunity’.

We now know a great deal about covid-19 vaccine hesitancy in general populations around the world from a large and growing body of survey and polling data and, increasingly, from actual vaccine uptake. Much less is known, however, about vaccine hesitancy amongst children and younger adults. Here, we report preliminary findings from a new UKRI funded survey of young people carried out by Kantar Public for the UCL Centre for Education Policy and Equalising Opportunity (CEPEO) and the London School of Economics. The survey provides high quality, representative data on over 4000 young people in England aged between 13 and 20, with interviews carried out online between November 2020 and January 2021. Methodological details of the survey are provided at the end of this blog.

Respondents were asked, “If a coronavirus vaccine became available and was offered to you, how likely or unlikely would you personally be to get the vaccine?”. While the majority (70%) of young people say they are likely or certain to get the vaccine, this includes 25% who are only ‘fairly’ likely. Worryingly, nearly a third express some degree of vaccine hesitancy, saying that they either definitely won’t get the vaccine (9%) or are that they are not likely to do so (22%).

Although there are differences in question wording and response alternatives, this represents a substantially higher level of vaccine hesitancy than a recent Office for National Statistics (ONS) survey of UK adults, which found just 6% expressing vaccine hesitancy, although this rose to 15% amongst 16 to 29 year olds.

Differences in vaccine hesitancy across groups

 We found little variation in hesitancy between male and female respondents (32% female and 29% male), or between age groups. However, as can be seen in the chart below, there were substantial differences in vaccine hesitancy between ethnic groups. Black young people are considerably more hesitant to consider getting the vaccine than other ethnic groups, with nearly two thirds (64%) expressing hesitancy compared to just a quarter (25%) of those who self-identified as White.  Young people who identified as mixed race or Asian[1] expressed levels of hesitancy between these extremes, with a third (33%) of mixed race and 39% of Asian young people expressing vaccine hesitancy. This ordering matches the findings for ethnic group differences in the ONS survey, where 44% of Black adults expressed vaccine hesitancy compared to just 8% of White adults.

To explore potential sources of differences in vaccine hesitancy, respondents were asked to state their level of trust in the information provided by a range of different actors in the coronavirus pandemic. The chart below shows wide variability in expressed levels of trust across different sources between ethnic groups, but most notably between Black young people and those from other ethnic groups. Young people self-identifying as Black were considerably less likely to trust information from doctors, scientists, the WHO and politicians and more likely to trust information from friends and family than those from other groups. Although in terms of overall levels, doctors, scientists and the WHO are most trusted across all groups. Encouragingly, only 5% of young people say they trust information from social media, a figure which was consistently low across ethnic groups.

We also find evidence of a small social class gradient in vaccine hesitancy, with a quarter (25%) of young people from families with at least one parent with a university degree[2] expressing vaccine hesitancy compared to a third (33%) of young people with no graduate parent.

We can also compare levels of vaccine hesitancy according to how young people scored on a short test of factual knowledge about science. [3]  Vaccine hesitancy was notably higher amongst respondents who were categorised as ‘low’[4] in scientific knowledge (36%) compared to those with ‘average’ (28%), and ‘high’ (22%) scientific knowledge. This suggests that vaccine hesitancy may be related, in part, to the extent to which young people are able to understand the underlying science of viral infection and inoculation and to reject pseudoscientific claims and conspiracy theories.

How much are differences in vaccine hesitancy just picking up underlying variation between ethnic groups in scientific knowledge and broader levels of trust? In the chart below, we compare raw differences in vaccine hesitancy for young people from the same ethnic group, sex, and graduate parent status (blue plots) with differences after taking account of differences in scientific knowledge and levels of trust in different sources of information about coronavirus. The inclusion of these potential drivers vaccine hesitancy do account for all of the differences between ethnic and social class groups. While Black young people are around 40 percentage points more likely to express vaccine hesitancy than their White counterparts, this is reduced to 33 ppts when comparing Black and White young people with similar levels of scientific knowledge and (in particular) levels of trust in sources of coronavirus information.

Our survey shows high levels of vaccine hesitancy amongst young people in England, which should be a cause for concern, given the likely need to vaccinate this group later in the year. We also find substantial differences in hesitancy between ethnic groups, mirroring those found in the adult population, with ethnic minorities – and Black young people in particular – saying they are unlikely or certain not to be vaccinated. These differences seem to be related to the levels of trust young people have in different sources of information about coronavirus, with young Black people more likely to trust information from friends and family and less likely to trust health professionals and politicians.

There are reasons to think that actual vaccine take up may be higher than these findings suggest. First, Professor Ben Ansell and colleagues have found a decrease in hesitancy amongst adults between October and February, a trend which was also evident in the recent ONS survey.  It seems that hesitancy is declining amongst adults as the vaccine programme is successfully rolled out with no signs of adverse effects and this trend may also be evident amongst young people. Given that parental consent will be required for vaccination for under 18s, it may be the case that parental hesitancy is as important for take up.

There may also have been some uncertainty in our respondent’s minds about what is meant by ‘being offered’ the vaccine, given there were no vaccines authorised for young people at the time the survey was conducted and no official timetable for immunisation of this group. Nonetheless, this uncertainty cannot explain the large differences we see across groups, particularly those between White young people and those from ethnic minority groups.

If the vaccine roll out is to be extended to younger age groups in the months ahead, we will face a considerable challenge in tackling these high levels of and disparities in vaccine hesitancy.

 

*Methodology*

The UKRI Covid-19 funded UCL CEPEO / LSE survey records information from a sample of 4,255 respondents, a subset of the 6,409 respondents who consented to recontact as part of the Wellcome Trust Science Education Tracker (SET) 2019 survey. The SET study was commissioned by Wellcome with additional funding from the Department for Education (DfE), UKRI, and the Royal Society. The original sample was a random sample of state school pupils in England, drawn from the National Pupil Database (NPD) and Individualised Learner Record (ILR). To correct for potentially systematic patterns of respondent attrition, non-response weights were calculated and applied to all analyses, aligning the sample profile with that of the original survey and the profile of young people in England. Our final sample consists of 2,873 (76%) White, 208 (6%) Black, 452 (12%) Asian, 196 (5%) Mixed, and 50 (1%) Other ethnic groups.  The Asian group contains respondents who self-identified as Asian British, Indian, Pakistani, Bangladeshi, Chinese or ‘other Asian’.

 

[1] Respondents in the Asian category are a combination of Indian, Pakistani, Bangladeshi, Chinese or ‘other Asian’ origin.

[2] We have not yet liked the survey data to the National Pupil Database and Individualised Learner Records which will enable us to use an indicator of eligibility for free school meals and IDACI. Currently we use parent graduate status as a proxy for socio-economic status.

[3] Once the survey is linked to the National Pupil Database we will be able to look across a wider range of measures of school achievement.

[4] There were ten items in the quiz, ‘low’ knowledge equated to a score of 5 or less, ‘average’ knowledge to a score of 6 to 8, and ‘high’ knowledge to a score of 9 or 10. Note that this test was administered in the previous (2019) wave of the survey.

This work is funded as part of the UKRI Covid-19 project ES/V013017/1 “Assessing the impact of Covid-19 on young peoples’ learning, motivation, wellbeing, and aspirations using a representative probability panel”.

Has a GCSE grade C/4 lost its value?

By IOE Editor, on 16 March 2021

By John Jerrim

With exams being cancelled again in 2021, concerns have resurfaced over there being rampant “grade inflation”. This was thought by many to be a perennial problem throughout the nineties and noughties as GCSE and A-Level pass-marks raised year-upon-year. Yet, when the Conservatives came to power in 2020, this was something that they vowed to end.

Indeed, some argued it was this obsession over avoiding grade inflation and maintaining standards that ended up leading to the disaster we saw with the awarding of examination grades last summer.

But how have GCSE standards really changed over time? This blog takes a look.

How can we do this?

To examine grade inflation over time I look at average PISA mathematics scores by GCSE mathematics grades, covering examinations taken between 2007 and 2019. PISA is taken just six months before GCSEs, and provides an independent benchmark that is meant to be comparable over time (and hence not affected by problems of grade inflation). (Though readers should keep in mind some of the caveats I have written about PISA previously.

This takes us through to 2019. But we know a lot of grade inflation also occurred last year due to the disaster that came with cancelling examinations. I have produced a rough estimate of the impact that this has had in terms of PISA scores and so also include this in the results (gory details of how I came up with this estimate can be found at the end of the blog).

Together, this allows us to look at changes since 2007 in the “value” (in terms of PISA points) of England’s GCSE “standard pass” (grade C in old money, grade 4 in new money).

A sustained fall in value

Figure 1 provides the headline results, comparing average PISA mathematics scores for those who achieve England’s 4/C grade standard pass in mathematics (green line) to the average for England as a whole (pink line) and across all OECD countries (blue line).

 Figure 1. The decline in PISA scores associated with achieving grade C/ 4 in GCSE mathematics in England since 2007

 

Notes: Grade C figures in 2012 based upon state school pupils only (illustrated by dashed line). Data for 2020 estimated from change in the grade distribution between 2019 and 2020. Year running along horizontal axis refers to the year GCSEs were taken by the PISA cohort.

There has been a clear and sustained fall in the value of England’s GCSE standard pass (grade C/4) over time. Back in 2007, hitting the floor target (grade C) was equal to the OECD average (495 points). Yet this value has got gradually eroded away, down to around 470 after Michael Gove’s time in charge and down to around 455 points for a grade 4 in 2020.

To put this into context, the OCED would equate this 40-point fall in the value of England’s floor target between 2007 and 2020 to a drop of more than one whole year of schooling.

Table 1 below provides further contextualisation of these results. This takes the PISA 2018 mathematics rankings and inserts the value of England’s floor target since 2007 (for each year with data or an estimate available). I have also thrown in the “value” of grade 5 in 2019 and 2020 (estimated) for good measure.

Table 1. The position of England’s C/4 and 5 grade within the PISA 2018 mathematics rankings
Country PISA score Country PISA score
B-S-J-Z (China) 591 Iceland 495
Singapore 569 New Zealand 494
Macao (China) 558 Portugal 492
Hong Kong (China) 551 Australia 491
Chinese Taipei 531 OECD average 489
Japan 527 Russia 488
Korea 526 Italy 487
Estonia 523 Slovak Republic 486
Netherlands 519 GCSE C (2010) 484
Poland 516 Luxembourg 483
Switzerland 515 Spain 481
Canada 512 Lithuania 481
Denmark 509 Hungary 481
Slovenia 509 United States 478
Belgium 508 GCSE C (2016) 473
Finland 507 Belarus 472
Grade 5 (2019) 506 Malta 472
England average 504 GCSE grade 4 (2019) 467
Sweden 502 Croatia 464
United Kingdom 502 GCSE C -state pupils (2013) 463
Norway 501 Israel 463
Germany 500 GCSE grade 4 (estimated) 2020 456
Ireland 500 Turkey 454
Czech Republic 499 Ukraine 453
Austria 499 Greece 451
Latvia 496 Cyprus 451
France 495 .+ 33 further countries….
Grade 5 (estimated) 2020 495
GCSE C (2007) 495

 

Children who got a grade 4 in mathematics in 2020 had roughly the same skills as the average young person in countries like Turkey and Ukraine. This is around 16 places lower in the PISA rankings than a child who got a C grade back in 2007 (roughly equivalent to countries like Australia, New Zealand and France).

Table 1 also illustrates how a grade 5 in 2020 now has almost exactly the same value as a C grade did back in 2007. Post-pandemic, this might justify the 5 grade becoming the new floor target young people are expected to achieve.

A tale of two policy mistakes

The devaluation of England’s floor target has really stemmed from two key mistakes.

The first was the miscommunication of what the floor target and expected standard was when the new 9 to 1 grading system was introduced – and whether grade 4 or 5 should be considered the “pass” mark.

The second was in the response to the cancellation last summer, which led to the eventual reliance upon (inflated) centre-assessed grades.

Now, only time will tell whether we will see yet more grade inflation this summer, as some suggest. But, if we do, then a conversation may be needed as to whether existing floor targets continue to hold sufficient value.

Gory details  

Table 2 below provides three pieces of information:

  • Column (i) = Average PISA scores by GCSE grades in 2019.
  • Column (ii) = GCSE mathematics grade distribution in 2019
  • Column (iii) = GCSE mathematics grade distribution in 2020.

To estimate grade inflation in terms of PISA scores, I first multiply average PISA scores at each grade by the percent of pupils who achieve each grade. This is done for both 2019 (second column from the right) and 2020 (the righthand-most column). The values in these columns are then summed together, giving a kind of “weighted average” for 2019 (486.5) and 2020 (497.6). The difference between these two values – 11 points – is my estimate of the impact of the 2020 grade inflation. Note that I treat this as a single value that causes a monotonic shift in the distribution, affecting all parts of it equally (i.e. I do not allow for any potential differential inflation at different grades).

Table 2. Estimating the value of grade inflation between 2019 and 2020 in terms of PISA points (mathematics)
  (i) Average PISA score (ii) GCSEs 2019 (iii) GCSEs 2020 column (i)* column (ii) column (i)* column (iii)
Grade 9 620 3.7% 5.4% 23 33
Grade 8 585 7.2% 7.9% 42 46
Grade 7 561 9.5% 11.0% 53 62
Grade 6 532 11.5% 13.0% 61 69
Grade 5 506 18.2% 20.1% 92 102
Grade 4 467 21.4% 19.7% 100 92
Grade 3 434 12.7% 11.1% 55 48
Grade 2 396 8.6% 7.3% 34 29
Grade 1 364 5.4% 3.9% 20 14
Grade U 337 1.8% 0.6% 6 2
Weighted avg 486.5 497.6
Difference 11.1  

 

How big is the challenge due to Covid-19 education disruption, and what can be done about it

By IOE Editor, on 23 February 2021

By Lindsey Macmillan, Jake Anders, Gill Wyness

 8th March 2021 will be the date that all children return to in-person schooling after another 8 weeks of absence for the majority. This is just short of a full year since schools first had to close their doors back on 20th March 2020. Of course, schools have been open throughout to critical workers’ and vulnerable children but, for most, there has been a return to home learning, and all of the difficulties that come with it. In this post, we consider the scale of the challenge that we are likely to face given the disruption to education that has been experienced over the past year, and what policymakers might do to mitigate these effects.

There can be little overstating of the sheer magnitude of the challenge that we face in recovering the huge amount of learning loss. There are three main points to make here from the evidence:

First, the emerging evidence from lockdown one is showing large learnings losses and big impacts on socio-emotional development. A recent study from EEF and NfER found that on average Year 2 children were two months behind in Autumn 2020 compared to previous cohorts. Another study by Juniper Education found that the number of children achieving at expected levels in primary school had fallen by one fifth in 2020 compared to 2019. Recent evidence from ImpactEd showed that the pandemic has also had a negative impact on children’s socio-emotional outcomes. And the modelling of the impact of this for the future economy is bleak. There are a range of estimates here, but they start in tens of billions and go into the trillions of pounds in lost earnings and growth due to lost learning.

Second, these average effects are masking big differences across groups. We know that younger and disadvantaged children have seen the biggest impacts. Disadvantaged children are 7 months behind where previous cohorts were at the same stage, compared to the average of 2 months. They also made the slowest progress in the autumn term, suggesting catch up efforts are not doing enough to tackle these differential effects. These greater educational losses also suggests future earnings losses will be particularly pronounced for this group, exacerbating inequality for a generation to come. As well as losses affecting certain types of pupils differentially, we are also seeing differences by skill type: while we see losses in learning across the range of key skills, they are more evident in maths in primary school.

Third, and crucially, these findings are all based on evidence from before this most recent lockdown. There is good reason to expect that differential learning losses will have worsened during the current lockdown – inequalities will have widened further. Why is that? Well while most pupils had relatively limited access to online learning in lockdown 1, this time around the picture is quite different. Online provision has improved, but not all will have been able to take full advantage of this. There are multiple barriers to home learning for disadvantaged pupils. While some of the more obvious barriers have been ameliorated by policy – laptops have been sent out, internet resources have been provided – there are many barriers that schools and DfE cannot mitigate. These include a lack of physical space to sit and work, different levels of parental confidence, different parental abilities to engage with the material to help children, and different skills to access the multiple online platforms required. Taken together this implies that, unfortunately, we are likely to see even larger inequalities in learning losses when children return to their classrooms.

What policy responses are required to mitigate these impacts?

Given the likely scale and nature of the task, this isn’t going to be easy. A key question for policymakers here is ‘What are we trying to do?’ Are we aiming to work our way back to pre-pandemic levels of skills and achievement, taking those stubborn inequalities in skills that we saw prior to all of this as given? Are we merely trying to reduce new levels of inequalities? Or are we thinking about reframing what our education system should be doing? The policy responses are very much dependent on the answer to those questions.

There is some very good evidence that small group and one-to-one tuition is an effective intervention for aiding pupil progress. As such it’s heartening that money has been invested accordingly subsidising a range of offerings in this space – this is a great example of evidence-led policy-making. But challenges remain. As the pandemic goes on – and given the likely further impact of the most recent closures – we need to ensure this resource is both adequately funded and targeted.

But given what we know about skill development, and rates of progress made in the autumn term, is this going to be enough? There are understandable concerns about wellbeing and play-based approaches should be prioritised for younger children. Unfortunately, this is unlikely to be something that will be a quick fix – we need to track data on progress and the impact of interventions, and keep coming back to this issue in the medium to long-term to adjust the policy design in response to what the evidence tells us here.

Finally, the wider evidence supports the need for high-quality inputs: investing in teachers and teaching assistants, ensuring that financial incentives are targeted in the places and subject areas where we need them, and bringing senior leaders and the teacher workforce along in this process is going to be vital for recovery. Therefore, serious caution is needed here when discussing ideas such as extending school days or cutting holidays.

In the long run, we need to ensure that schools have the resources required to tackle the challenges they face. At times of great crisis comes great opportunity – the end of the Second World War saw the introduction of Free School Meals – and this might be the time to re-think fundamentally how we cater for those most at need across the education system, rebalancing funding and high-quality inputs accordingly to achieve this aim.

Out of crisis can come transformative and positive change: some lessons from history

By IOE Editor, on 19 February 2021

By Luke Sibieta, Research Fellow, Institute for Fiscal Studies (IFS) & Education Policy Institute (EPI)

Lost learning over the pandemic is likely to lead to significant long-term costs if pupils are unable to catch-up over the coming years. I have recently argued that missing half a year of normal schooling could amount to lost lifetime earnings of about £40,000 for each child in school today, based on existing evidence on the returns to schooling. This is not a precise estimate or projection, which would be effectively impossible at present, but an illustration of the scale of the risk we face. There are also much bigger estimates of the long-run cost of lost learning that go into the trillions after accounting for potential effects on economic growth. Policymakers should be responding now in a way that recognises the high probability and risk of massive long-run costs.

The scale of the potential costs calls for radical action and a massive amount of extra resources. However, there is also a need to focus on quality. Creating more weeks or hours of schooling to even things out on a ledger would not achieve very much if it can’t deliver high-quality teaching or just leads to teachers and pupils feeling totally drained, or worse, punished. Indeed, there is a wider lesson. If the sole goal of catch-up is to get back to a hypothetical, pre-pandemic benchmark, it is unlikely to galvanise support for radical change or extra resources. Should we just be aiming to get the attainment gap back to where it was pre-crisis?

Creating more weeks or hours of schooling to even things out on a ledger would not achieve very much if it can’t deliver high-quality teaching or just leads to teachers and pupils feeling totally drained, or worse, punished.

Here, there are some very clear lessons from the last century when the country suffered massive upheaval during wars, which then directly spurred positive changes to the school and education system.

World War 1 and the 1918 Fisher Act – missed opportunity

Children’s lives were turned upside down during World War 1. Many will have seen fathers and other family members go off to fight and never return.  Many missed school to help at home whilst their mothers also took on new jobs to help the war effort. Many teenagers went off to fight and die themselves.

The disruption to schooling, however, was lessened because there wasn’t all that much schooling going on. The school leaving age was 12 and very few children went to secondary schools, which charged fees. During the war, the President of the Board of Education was H.A.L. Fisher (MP for Sheffield Hallam and whose underpants formed a key detail of Operation Mincemeat in 1943). From 1916, he toured the country and was shocked by the level and under-financing of schooling. This directly led to the 1918 Fisher Act, which raised the school leaving age to 14, with ambitions to increase it to 16 and create a system of free secondary schooling.

The economic depression of the 1920s and burdens of war debt meant that most of the main provisions were either delayed or dropped altogether. The share of pupils staying on to secondary schools only increased from 10% to 14% between 1910 and 1938.

The Fisher Act was high on ambition but ultimately represented a missed opportunity.

1944 Butler Act – the creation of free secondary schools

The 1944 Butler Act is much more well known. It formed part of more general efforts to create the welfare state in the wake of World War 2, alongside the Beveridge Report and creation of the National Health Service.

As is well known, children’s education was massively disrupted as many had to leave towns and cities as evacuees. As has been rightly pointed out, many children got much joy and new skills through these experiences, which will have also happened today. But, it is important to recall that provision of formal education would have been fairly limited in the 1940s, even without a war. Most children still left school at 14, if that, and with no formal qualifications. Universal secondary schooling was still a pipedream.

Appointed as President of the Board of Education in 1941, R.A. (Rab) Butler quickly developed an ambitious plan for reform of the school system. Convincing Churchill of the merits of the legislation was difficult at the height of the war, but was partly achieved (or assumed) through Butler’s complementing of Churchill’s cat in his bedroom. The 1944 Butler Act then created a nationwide system of free secondary schools and raised the school leaving age to 15. There were further plans to raise it to 16 when practical, though this got postponed till 1973 (that pesky war debt again). This led to the tripartite system of grammar schools, secondary moderns and secondary technical schools. The act also established the present system free school meals and (now abolished) system of free milk.

Whilst there is much debate about the role of grammar schools, it is also important to recognise the achievements of the Butler Act in creating a system of free secondary schooling and increasing years of schooling. Prior to the law, 60-70% of young people left school at age 14 or below. Studies of the increase in the school leaving age to 15 in 1947 show that it is likely to have increased adult earnings amongst those affected by about 10-14% per year. Whilst the increase in the school leaving age to 16 was delayed till 1973, many studies have shown large and positive effects on adult earnings.

The Butler Act was therefore a significant achievement in extending schooling and increasing life chances. It may have been more successful if the increase in the school leaving age to 16 had not been delayed by 25 years.

US GI Bills – creating new opportunities

Looking across the Atlantic, President Roosevelt signed the GI Bill into law in 1944.  This very famous piece of legislation provided a range of benefits to veterans across a range of different areas, in recognition of their sacrifice and the disruption to their education. This included very significant support for education, training and payment of college fees. A range of studies have shown positive effects amongst those were able to take advantage of the bill’s main features, and the GI Bill is almost part of the American psyche.

Be positive, radical and pay for it

Looking back through history, large disruptions to schooling and education during war time have often been followed by large transformations to the education system and extensions to schooling. However, policymakers in the UK have not always been willing to pay for the most transformative ideas.

Today, we are again facing massive disruption to schooling, of a kind not seen since World War 2. Rather than setting narrow goals to get back to a hypothetical pre-pandemic benchmark, perhaps we should also be setting positive and transformative goals. And we should be willing to pay for the resources required.

Setting such goals is a much harder question. This is partly because we have already implemented some of the obvious changes, such as raising the school leaving age to 16. This has since been increased to an education leaving age of 18 in England, though this is not seriously enforced and does not apply in Wales, Scotland and Northern Ireland.

The most worthy goals for today are likely to be harder and more nuanced. At present, children from poorer families leave school 18 months behind their peers from richer families. Only about two thirds of young people aged 19-24 possess an A level equivalent qualification or higher. Perhaps we should be setting a goal for all children to leave education at age 18 with qualifications that are high-quality and reflect a broad and deep curriculum.  Achieving such a goal would require a relentless focus on high-quality teaching, joined-up action across all parts of the education system (from the early years through to colleges) and with other public services. Maybe that should be COVID’s legacy for the education system.

Housing wealth, not bursaries, explains much of private school participation for those without high income

By IOE Editor, on 4 February 2021

By Jake Anders and Golo Henseke

Although less than a tenth of children in Britain attend private schools, who goes matters to all of us. This is because of the considerable labour market advantages that have persistently been associated with attending a private school, including recruitment into the upper echelons of power in British business, politics, administration and media. As a result, in recent work published in Education Economics we looked into who send their children to private schools. In brief, despite all the talk about bursaries, public benefits and attempts at widening participation, who goes to private school remains as closely tied to family income and wealth as it did at the end of the 1990s. This casts doubt on accounts of real progress in opening up the sector to a more diverse student body.

In the paper we demonstrate quite how concentrated private school attendance is among the highest levels of household income (see image). The proportion of children attending private school is close to zero across the vast majority of the income distribution, and doesn’t rise above 10% of the cohort except among those with the top 5% of incomes. Only half of those in the top 1% send their kids to private school.

Income concentration of private school participation, 1997-2018.

 

On one level this is unsurprising. Sending your child to a private school costs a lot of money: in 2018 average annual fees were £14,280 for day schools and £33,684 for boarding schools. Not many people have more than £1000 per month available to spend on school fees unless they have some of the highest incomes in the country. But what about those who do attend even though they’re from families with incomes below these levels, even if there are not many of them?

One potential explanation, much flaunted by private schools themselves, are bursaries. Indeed, our analysis found that about 1 in 6 private school pupils received some form of financial support such as bursaries or fee reductions – does that explain our observation and suggest these are doing real work to open up the private school sector to a wider stretch of society? Sadly, not: it’s not the case that all kinds of financial support are targeted at lower income groups (some are academic or music scholarships, for example) and if we focus on those outside the top income decile, a large majority – up to four out of five children – are not receiving grants or bursaries.

Furthermore, among those who received it, average financial support was around £4,900 in 2011-2018. This is little changed from earlier periods that we also analysed and, because of rising fees, paid for a smaller fraction of those fees (35% compared with 57%) than it did in 1997-2003. Taken together, these cast serious doubt on the idea that this is making a big difference to widening participation in private schools – or that it’s playing a growing role in achieving this in recent years.

As such, we set out to explore other sources of potential financing for private school fees that might explain their affordability at lower levels of income: housing wealth and how it has grown in recent decades. We find that a 10% rise in a family’s housing wealth raises private school participation by 0.9 percentage points. This is actually similar to the association we see between family income and private school participation – among those with high levels of income. However, unlike the income link, the role of increased housing growth is evident much further down the income distribution. This suggests that access to wealth, rather than support from bursaries and grants, is playing an important role in helping these families send their children to private schools.

These findings have clear implications for things that need to change. Our findings imply that while existing bursaries offered by private schools do perform a somewhat progressive role, they are far too small and scarce to make much of a real dent in private schools’ exclusivity. Means-tested bursaries would need to expand considerably in reach and scale, and the selection criteria should take into account family wealth, not just income. Private schools need to up their game dramatically in this respect, otherwise calls for externally imposed reforms to effect real change will only grow louder.

This research was covered by in an article by The Observer.

 

Scarring effects of Furlough

By IOE Editor, on 2 February 2021

By Professor Paul Gregg, University of Bath

The Chancellors furlough scheme is a dam holding back a torrent of unemployment. A long history of research has shown that open unemployment has sizable costs to workers after they have returned to work – called scarring. But these scarring effects will not hit all workers equally – they will primarily impact those from the younger generation due to the important role of work experience in the process.

Furlough vs unemployment

For prime-age and older workers, the main cost of unemployment comes from the dislocation from the existing job. The quality of the replacement job match is lower because a range of experience and knowledge is underused. This can be specific knowledge to the firm, industry or occupation or the seniority/responsibility in the job role. Long-term unemployment sees greater loss of application of this knowledge and experience as jobs are further away from the old position across the domains just listed. Some of this cost of dislocation is recovered by later job moves but typically not that cost associated with long-term unemployment. Here then furlough is totally different than unemployment as there is no such dislocation. This also represents the economic value of keeping so many hard hit businesses afloat. It would take a lot of time for replacement businesses to start-up and then to grow to be as productive in their use of labour as those that would be closed without furlough and other supports. These supports are thus limiting the economic destruction of productive potential that a deep recession creates.

For younger workers, the story of unemployment is less about the lost job, which are generally lower paid entry positions. Rather it is the lack of accrual of the crucial work experience which attracts pay rises and allows job moves/promotions which attract even large pay rises. A years tenure in work for a young person generates pay growth 5% above that for an older experienced worker (more after one year in a job than 5 or so and at younger ages) and a job-to-job move generates around 12%. This is how young people progress through the labour market and build careers. Older workers also get pay rises when moving jobs and at short tenures but they are less common and smaller in magnitude. Here then furlough is likely to be very similar in its effects to unemployment. People are drawing a salary but not actually gaining experience or promotion opportunities.

Thus for older workers with extensive tenure in their current post, furlough should not result in the costs of unemployment but it will disrupt the gaining of experience and potentially job moves that are so essential for young people.

The outlook for the younger generation

In a bad recession youth unemployment and the proportion of young people not in work or education often rise to 25 to 30%. Upwards of 20% accumulate substantial periods (a year or more) out of work between the ages of 18 and 25. Now furloughing of young people has been very common, partly because of the sectors at the heart of the lockdowns but also because of their lower seniority. A million young people were furloughed in early July (the earliest I have found giving an age breakdown) – some 20% of the total at that time – whilst just under another million were not in work or education. This was around 30% of all young people either on furlough or out of work and college. Among those aged 18-24 it was 35%. By the end of October young people on furlough fell to 350,000 but is no doubt higher again now. The year of Covid overall is thus likely to have seen 25% of young people not in college not gaining normal work experiences, very much in line with a normal recession.

The better news is that young people in similar situations do recover a substantial portion of these wage loses. Graduates in a normal recession do not suffer a lot of unemployment but do get work in lower status and paying occupations, losing 3% pay growth per year in a suppressed labour market (normally for 3 years after a recession). But they do see faster earnings growth after a recession ends, recouping about half the losses. This is the likely situation for today’s Covid generation of young people. Provided of course, that the end of furlough is not associated with an explosion of youth unemployment.

The policy response to youth unemployment is a programme like the new Kickstart programme to give that missing experience. But whilst good number of places are promised by firms, there have been nearly no actual starts because of Lockdown. This can’t help until furlough ends. Rather it is making sure of a strong recovery from the Summer that is the only prescription that can limit the damage of lost work experience of young people through the pandemic.