X Close

UCL IRDR Blog

Home

UCL Institute for Risk and Disaster Reduction

Menu

How not to prepare for earthquakes: lessons from history

By Dan Haines, on 16 August 2023

Two devastating earthquakes hit India, Pakistan and Nepal in the 1930s. Can we learn anything from history which will help reduce disaster risk today?

The takeaway: colonial officials kept improvising their response to major earthquakes instead of preparing for future events or building resilience. After independence India, like many other countries, remained focused on response and rehabilitation. Despite legislative and policy changes since the 2000s, more can be done to mainstream disaster risk reduction. Several South Asian organisations are leading the way on this including AIDMI and SEEDS in India; NSET in Nepal; Duryog Nivaran in Sri Lanka. We should support their work.


Map of the Bihar and Quetta earthquakes, indicating approximate locations of most intense damage in British India. Reproduced under a CC-BY license from Haines, D. (2023), Recovering the status quo: tipping points and earthquake aftermaths in colonial India. Disasters. 

The earthquakes struck in 1934 and 1935, when India and today’s Pakistan were still colonised by the UK. The colonial state reacted by organising search and rescue and calling for public donations to relief funds for survivors. It rebuilt roads, railways and telegraph lines.

South Asians mounted their own responses, which both supported and challenged the state’s. By the 1930s the Indian National Congress and a host of other organisations had generated a well-organised mass movement that opposed British rule.

Nationalists started their own relief fund after the 1934 earthquake in Bihar, North India. Colonial officials cooperated with them despite political differences and the worry that nationalists would gain greater public support by doing highly visible relief work. Many other civil society organisations which had less antagonistic relationships with the state also helped survivors.

After the 1935 earthquake at Quetta, Balochistan (now in Pakistan) the colonial government banned nationalists and other volunteers from even travelling to the ruined city. Instead they evacuated 30,000 people – almost the entire civilian population – by rail. Survivors were sent to refugee camps or their ‘home districts’ in Punjab and Sindh.

Nationalists protested against the travel ban and criticised the colonial army’s search and rescue operations. In response the state used repressive legislation to fine newspapers for ‘sowing dissent’.

Nervous of the challenge that nationalists posed to their legitimacy as rulers, British officials kept politics at the forefront of their response to earthquakes. The army worried that ‘the desire to make political capital’ motivated Indians who applied for permission to go to Quetta after the earthquake there. Even in Bihar officials focused on maintaining law and order, making a show of protecting state assets and private property against suspected ‘looters’.

Let’s look beyond politics. The colonial state lacked coherent policies on earthquake management. Search and rescue, relief, and reconstruction efforts were all ad hoc.

The government improvised every time it faced a big earthquake, even though it had had policy frameworks for managing frequent famines and recurrent floods since the nineteenth century: not just in the 1930s, but also after earlier quakes in the 1890s-1900s.

Sound familiar? After independence, India inherited colonial bureaucratic structures. For decades it continued focusing on emergency response and rehabilitation for survivors. That came at the cost of preparing and funding people, institutions and physical infrastructure for future crises.

The Government of India’s own Task Force reported in 2013 that response capacity was good. But major legislative and policy changes of the early 2000s needed better on-the-ground enactment to make holistic risk reduction really effective. State and district level disaster management authorities needed professionalisation and more resources.

The National Disaster Management Plan (2016, revised 2019) still speaks of the need to mainstream disaster risk reduction across sectors and departments.

So – the colonial state’s strengths in response have carried forwards through time, but so has its tendency to improvise during emergencies rather than prepare effectively for the future.

A recent assessment by Indian and UK researchers found that district-level disaster management is still stuck in responsive mode, though with improvements in efficiency.

Many NGOs in South Asia are proactively building resilience and rightly advocating for preparedness. Including AIDMI and SEEDS in India; NSET in Nepal; Duryog Nivaran in Sri Lanka. These organisations are helping regional governments to improve existing approaches and correct colonial missteps.

My lesson from history? We should continue to support their work.

Read my article, just published in Disasters, to learn more about the history and politics of earthquake response in colonial South Asia. No paywall!


Daniel Haines is lecturer in disaster and crisis response at UCL IRDR. He researches historical hazards, dam-building and international river water disputes in South Asia. He tweets at @DanielHaines1.


Read more IRDR Blogs

Follow IRDR on Twitter @UCLIRDR

A step closer in earthquake forecasting

By Joanna P Faure Walker, on 16 August 2019

Dr Zoe Mildon, former IRDR PhD student and now lecturer at University of Plymouth, together with Dr Joanna Faure Walker  (UCL IRDR), Prof Gerald Roberts (Birkbeck) and Prof Shinji Toda (Tohoku University IRIDeS), have published a paper in Nature Communications showing we are a step closer in understanding which faults could rupture in the next earthquake:

Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard

In this paper, we use long-term stress loading on faults in the central Apennines, Italy, together with stress loading from historical earthquakes in the region to test whether we can identify faults which have a positive stress and hence are ripe for rupture.  We found that 97% large earthquakes within the central Italian Apennines from 1703-2006 occurred on positively stressed faults. Therefore, we can use our modelling to calculate which faults are currently positively stressed and hence help us to determine which faults could rupture in the future. This is not the same as earthquake prediction – saying exactly when and where an earthquake will occur, but it is a step closer to better seismic hazard assessments and understanding why, how and when earthquakes occur.

Dr Joanna Faure Walker standing by a limestone fault scarp in the central Italian Apennines

The paper is available through open access: Mildon et al. (2019)

An article was written about the paper in the Daily Mail

The original press release is available here.

This work is part of the IRDR’s continuing collaboration with Tohoku University, IRIDeS (International Research Institute for Disaster Science). Our collaboration has led to papers including topics such as earthquake stress transfer (Mildon et al., 2016), disaster fatalities (Suppasri et al., 2016), and temporary housing (e.g. Naylor et al., 2018).

Fault responsible for 1908 Messina Earthquake found

By Joanna P Faure Walker, on 9 May 2019

In 1908 a Mw7.1 earthquake struck the town of Messina in Sicily, Italy.  This earthquake killed over 80,000 people making it the most deadly earthquake in Europe since 1900. Despite causing great losses and prompting research into earthquake environmental effects worldwide, the fault responsible for this earthquake has before now remained a source of contention.

However, new research has identified the fault responsible for this event. This was done using elastic half-space modelling and levelling data from 1907–1909. This research has highlighted the importance of studying mapped faults to locate past events.

This work was led by PhD student Marco Meschis (Birkbeck College) in collaboration with researchers from UCL IRDR, Birkbeck College, University of Plymouth and Università degli Studi dell’Insubria.

Meschis, Roberts, Mildon, Robertson, Michetti and Faure Walker (2019) Slip on a mapped normal fault for the 28thDecember 1908 Messina earthquake (Mw 7.1) in Italy, Scientific Reports, doi:10.1038/s41598-019-42915-2

Recent IRDR research on Italian earthquakes includes:

Iezzi,  Mildon, Faure Walker, Roberts, Wilkinson, Robertson, (2018) Coseismic Throw Variation Across Along-Strike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures, Journal of Geophysical Research: Solid Earth 

Faure Walker J.P., Visini F., Roberts G., Galasso C., McCaffrey K., and Mildon Z., (2018) Variable Fault Geometry Suggests Detailed Fault-Slip-Rate Profiles and Geometries Are Needed for Fault-Based Probabilistic Seismic Hazard Assessment (PSHA), BSSA 109 (1), 110-123

 

Earthquake surface measurements reveal new revelations about how faults rupture

By Joanna P Faure Walker, on 12 November 2018

PhD student Francesco Iezzi (Birkbeck College), supervised by Prof Gerald Roberts (Birkbeck College) and Dr Joanna Faure Walker (UCL IRDR), has published a paper that could revolutionalise how geologists and seismic hazard modellers use long established scaling relationships between fault lengths and surface rupture parameters.

The paper is freely available to all and can be found here.

What new observations have been made?

For five earthquakes studied, the surface fault slip (the amount the fault surface moved during the earthquake) and the throw (the vertical component of the slip) was higher where there was a bend along the length of the fault.

Following the central Italy August and October 2017 earthquakes that ruptured the ground surface, we made detailed high spatial resolution measurements of surface fault displacement along the length of the surface fault ruptures. A study of the amount of vertical and horizontal displacement that occurred along the length of the fault revealed that the throw and slip that occurred during the earthquakes increased where there are bends in the fault. This result is critical and has not been identified before for individual earthquakes.

Damage in Amatrice from the August 2016 Earthquake. Photograph take during EEFIT fieldwork by Dr Joanna Faure Walker.

Why does this occur?

We hypothesis that this occurs in order to maintain the horizontal strain (change in length relative to the original length) across a fault during an earthquake and the long-term horizontal strain-rate that accumulates from multiple earthquakes over thousands of years.

Are there other examples of this?

We then went back and studied other examples earthquakes where there was enough information to determine whether a similar pattern of higher throw and slip could be seen across bends in the fault. In the three further events studied in USA Basin and Range, Greece, and Mexico, we found the same relationship. So it seems this phenomenon occurs worldwide in normal (extensional) faults.

This was the first time that the change in vertical component of slip during an earthquake has been shown to be predictable. However, the observed relationship of increased throw across fault bends has been identified previously in long-term displacements that have accumulated over 15 thousand years as a result of multiple earthquakes in Italy (Faure Walker et al., 2009, Wilkinson et al., 2015). Before now, it was not known whether this increase was caused by there being more earthquakes across the bends or more movement during individual events.  We now know that there can be more slip during individual events, however we do not know whether this is the only mechanism for creating a long-term higher throw-rate across the bends.

What does this mean for earthquake science?

This paper suggests that slip during an earthquake will change where there is a bend along the length of the fault and this change can be quantified and predicted using the proposed theory. This means that close to the fault, earthquakes may be more damaging near a bend in the fault. This finding suggests that we cannot use fault scaling relationships between fault length and expected slip in earthquakes without consideration of fault geometry. This paper can also explain much of the scatter seen in existing plots of maximum surface slip against fault length because when collecting the data as input for such relationships, consideration was not given about whether the measurements were taken across fault bends or not.

These changes in slip along faults in individual earthquakes related to the fault geometry should be included in probabilistic seismic hazard assessments (PSHA).

What other research in the IRDR relates to this?

This work contributes to the IRDR and colleagues’ work on investigating fault behaviour to improve our understanding of earthquake hazard. Recent papers have demonstrated the importance of including detailed fault geometry and slip-rates in seismic hazard calculations (Faure Walker et al., 2018) and Coulomb stress transfer calculations (Mildon et al., 2016, 2017).

Iezzi et al (2018), Coseismic Throw Variation Across Along‐Strike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures, Journal of Geophysical Research, https://doi.org/10.1029/2018JB016732 

Italian Earthquakes, Large and Small

By ucfbtag, on 6 September 2016

O 1693 c’ha succirutu!

E si n’ha ghiutu lu Vallu ri NuotuUntitled

S’u u pi sorti an-Catania iti

Ciù ri milli voti lacrimati!

Catania ca era ciù perfunna

Ricca ri –ngegnu e ri storia ornata

Spincitivi l’ate a truviriti

L’afflitta virgine a batiuoti.*

(Burderi 2014)

Traditional poem on the M 7.4 earthquake that struck Sicily in 1693, killing about 60,000 people and totally destroying towns such as Noto and Grammichele

 

In Italy damaging earthquakes occur on average once every 19 months, and seismic disasters happen about once every four years

The M6.2 earthquake of 24th August 2016 in central Italy occurred at 03:36 hrs local time and had a hypocentral depth of about 4 km. At least 281 people were killed, with the highest total at Amatrice (pop. 2,646) in the Province of Rieti (Region of Lazio). This event occurred in a predominantly rural area of the Apennines, and the population of the area of major damage was a mere 4,500 people. As a whole, the event recalls the M5.2 seismic disaster of May 1984 in the Abruzzi National Park (140 km south of Amatrice), in which three people died and 11,000 were left homeless (Alexander 1986). In terms of damage to schools, it recalls the M6.0 earthquake of October 2002 at San Giuliano di Puglia, 182 km from Amatrice, in which 27 children and three teachers were crushed to death when a school collapsed (Langenbach and Dusi 2004). In Amatrice the collapse of a school prompted the same questions about the seismic resistance of educational facilities, and the quality of seismic upgrading as had been raised at San Giuliano (Grant et al. 2007). There are possible indications of corruption and that, according to correlation studies, is the principal cause of seismic disasters, world-wide (Escaleras et al. 2007, Ambraseys and Bilham 2011).

In Italy, the immediate political response to the 2016 Amatrice disaster involved a great many fine words and pious hopes about prevention, reconstruction and the preservation of culture. With respect to previous earthquakes, there were some improvements in the organisation and planning of post-event recovery, notably in cultural heritage protection. However, the sums of money offered to the affected area were by no means large enough to accomplish what the politicians said should happen. Italy is the largest beneficiary of the European Union solidarity fund, and in times of seismic disaster it has also drawn heavily on regional support grants. This has not always meant that the use of the funds has met with EU approval—see the conclusions of the European Court of Auditors’ report on the 2009 L’Aquila earthquake (ECA 2012).

Typically in Italy, events such as the 2016 Amatrice earthquake do not lead to a sustained government response, for there are too many other demands upon the public purse. Commonly, the public part of reconstruction funding is largely gleaned from European funds or else is tacked onto parliamentary bills designed to fund other things, in what Americans call ‘pork-barrel legislation’. At best, a government may wait until the financial climate is more favourable before it allocates significant funding to recovery. Thus it was three years before the first stirring of reconstruction occurred in L’Aquila after the M6.3 earthquake of 2009. Public debt incurred in reconstruction after the 1968 Belice Valley, western Sicily, earthquakes, will not be paid off until 2038, 70 years after the disaster. Belice, moreover, had to wait 15 years before reconstruction even started (Parrinello 2013).

These are the minor events. People suffer no less in them than they do in the major ones, but the overall picture is quite different.

Alexander, D.E. 1986. Disaster Preparedness and the 1984 Earthquakes in Central Italy. Natural Hazards Working Paper no. 57, NHRAIC, University of Colorado, Boulder, Colorado, 90 pp.

Ambraseys, N. and R. Bilham 2011. Corruption kills. Nature 469: 153-155.

Burderi, M. 2014. Il terremoto del 1693 nella pietà popolare. Archivio degli Iblei, July 2014: 1-13. (archiviodegliiblei.it

ECA 2012. The European Union Solidarity Fund’s Response to the 2009 Abruzzi Earthquake: the Relevance and Cost of Operations. Special Report no. 24, Publication Office, European Court of Auditors, Luxembourg 52 pp.

Escaleras, M., N. Anbarci and C.A. Register 2007. Public sector corruption and major earthquakes: a potentially deadly interaction. Public Choice 132: 209-230.

Grant, D.N., J.J. Bommer, R. Pinho, G.M. Calvi, A. Goretti and F. Meroni 2007. A prioritization scheme for seismic intervention in school buildings in Italy. Earthquake Spectra 23(2): 291-314.

Langenbach, R. and A. Dusi 2004. On the cross of Sant’Andrea: the response to the tragedy of San Giuliano di Puglia following the 2002 Molise, Italy, earthquake. Earthquake Spectra 20(S1): S341-S358.

Parrinello, G 2013. The city-territory: large-scale planning and development policies in the aftermath of the Belice valley earthquake (Sicily, 1968). Planning Perspectives 28(4): 571-593.