X Close

Medical Physics and Biomedical Engineering Teaching

Home

Highlights of the teaching going on in UCL Medical Physics and Biomedical Engineering

Menu

Archive for January, 2016

Regaining Control

By rmapapg, on 18 January 2016

By Rebecca Yerworth

Just before Christmas, DSCN2511 the second year Biomedical Engineering students spent a week in the lab designing and building a device to replace a computer mouse for a hypothetical client who had no hand. The devices picked up electrical activity in the muscle of the arm and translated these into cursor movements and clicks – or at least that was the theory.

Regaining controlThe students’ knowledge of electronics, anatomy and problem solving were all put to the test as they built and tested their circuits. They discovered the delights of bread-boarding moderately complex circuits – and the importance of keeping your ‘spaghetti’ colour coded! Of equal importance was realising that some muscle groups are easier to control independently that others – and that what most of us do routinely, without consciously thinking about it, takes a lot more physical and mental effort when being relearnt.

All the groups successfully detected and recorded electrical activity from muscles. Detecting muscle activity from multiple muscle groups with a sufficiently clear signal to control a mouse pointer is much more challenging, but everyone managed this, at least intermittently. In amongst the hard work, it was good to see the moments of fun and hear the cries of delight as the first hand-free mouse clicks appeared.

Writing a research grant in radiotherapy

By rmapapg, on 6 January 2016

By Adam Gibson, Konstantin Lozhkin and Gary Royle

We have a long-standing module on “treatment with ionising radiation“. Ten years ago, one of us, Konstantin Lozhkin, completed UCL’s teaching course run by CALT. For his dissertation, Konstantin proposed teaching the module using Problem-Based Learning techniques, and, back in the day before research-based teaching became a big thing, we decided to give it a try.

Problem-based learning (PBL) is not new. It was developed by Célestin Freinet who was injured during the First World War. After the war, he became a teacher, but due to his war injury, he found talking in class difficult. This acted as the inspiration for a new style of teaching where he set problems and encouraged students to solve them co-operatively thereby learning from each other. The concept was taken further by McMaster University Medical School, who pioneered teaching by PBL. It is now widely used, especially in medical schools and it is seen to give students responsibility for their learning, reinforce deeper understanding, lead to improved motivation and encourage the development of teamwork and collaboration.

Our implementation of PBL has changed somewhat. The task we used first was to ask the students to imagine they are a medical consultant for a TV drama series in which a character is about to undergo radiotherapy. Students were asked to write a portfolio for the scriptwriters which summarised the radiotherapy issues and propose a plot. This successfully engaged the students but we found that they could avoid the technical aspects of radiotherapy physics which was the whole purpose of the exercise. We therefore changed the task, and now we send the students a spoof email from a “head of department”, asking them to produce a research grant application which compares two forms of radiotherapy.

Problem based learning task

An example task for the problem based learning exercise

We give an introductory lecture which describes PBL, gives some tips on teamwork and how to prioritise tasks, and then provide space for students to meet with tutors once or twice a week. The task lasts for around 4 weeks, at the end of which each team of 5-6 students give a presentation and submit a portfolio. Individual students also fill in an anonymous sheet in which they assess their own contribution and that of their teammates, and they also write a short (<300 word) self-reflection. These let us differentiate individual effort from the team performance. One real advantage of this type of team-learning exercise in this module is that it attracts students from a wide variety of programmes (usually Medical Physics, medical students taking an intercalated BSc in Medical Physics, straight physics students, Natural Sciences students and often others), which encourages students from different disciplines to learn from each other. The presentations are invariable excellent, and often contain dose calculations, original data and a costing for the grant application. Feedback is given instantly after the presentations, and a later team-specific “email” is sent from the “Head of Department” commenting on the grant application.

We provide students with a Moodle forum which allows them to communicate with each other. They tend to find this limited, however, and organise their own electronic communication. Students have used email, Facebook, Google Docs, Dropbox, text messages, MySpace and WhatsApp. This means we are less able to track the group’s activity, but it wouldn’t be in the spirit of PBL to impose a particular method of communication on the students.

Students typically put in a lot of work and enjoy the exercise. Feedback to us from students includes “it’s been amazing working with such a brilliant team”, “I am grateful to have had the opportunity to learn so many valuable lessons”, a good experience to simulate working in the real world”, and “every member of the team worked hard and well so we ended up with a high quality final piece that I thoroughly enjoyed working on”.

We as staff enjoy it too. It’s good to see students develop in confidence as they come to grips with the problem they have been set, and to see the positive way in which they tackle the problem. There are disadvantages: it’s hard to give a genuine individual mark for a team effort such as this (although the peer assessment sheet and the reflective essay help), and we have sacrificed some lectures to make time for this, which reduces the core syllabus on which the exam is based. However, we feel the advantages outweigh the disadvantages and look forward to continuing this into the future, and perhaps extending PBL techniques into other modules.