X Close

Medical Physics and Biomedical Engineering Teaching

Home

Highlights of the teaching going on in UCL Medical Physics and Biomedical Engineering

Menu

How to make the assessment of group work better?

By rmapapg, on 5 April 2017

by Lucia Albelda Gimeno and Isobel Chester

The Individual Peer Assessed Contribution (IPAC) Consortium aims to develop a tool for the fair and effective peer assessment of individual contribution in student group work. This Consortium was started by Pilar Garcia Souto after the UCL Teaching and Learning conference 2016, and the initiative has attracted members of staff from 20 different departments.  Initially we were drawn to the project as it would provide us with invaluable experience of working with both students and professors in our and other departments, and has the capability of influencing a large number of students. For us, we could contribute to an academic research project which would provide us with knowledge of organising focus groups and collecting data to analyse in an advantageous way. Also the ability to impact the department, and quality of education at UCL, during our time here is appealing. During our studies, we have had negative experiences in group work and were drawn to the possibility of expressing our problems and been part of the process of solving them; this in turn would provide with a level of understanding of how academic institutions are run.

Personally, we feel like we will contribute primarily by gathering information. We believe if we speak to a large number of students, their view and comments may be more honest speaking to another student rather than a member of staff – increasing the reliability of the data collected. From our own experience, we found that during group work people did not contribute evenly, but due to small class sizes we could not raise the issue in a fair way. If the complaint was addressed, a problem arose of our lecturers not knowing how to deal with this which seemed unfair. Therefore, we would like to be part of the system to change this. Also we can recommend the level of advice the student’s will require to assess appropriately.

Since we started, we obtained a Change Makers project in which we are working along another 4 students from EEE, as well as Dr Ryan Grammenos, Mira Vogel and Pilar Garcia Souto. We have also co-authored a presentation at the UCLU Education Conference 2017 and reviewed one possible system (Teammates). Finally (so far) we have run two focus groups with over 27 students in total and free pizzas.

It is evident the main benefit of our contribution to the IPAC Consortium is to obtain students’ perspectives on the preferred and fair method of assessing group work, as well as their views on different platforms aiming to identify one that has a friendly interface and that students find easy to use. The outcomes of this project will inform the IPAC Consortium and their recommendations, will have a direct impact on student motivation as they are aware their individual effort is assessed. In turn, this will benefit us, our department and UCL as a whole.

You can find more details of the project and the IPAC Consortium in the wiki!

How do you demonstrate gamma imaging practically to students, without a radiation hazard?

By rmapapg, on 10 January 2017

By Rebecca Yerworth

This was the challenge set to 3rd year project student Nicola Wolf. The outcome? Gamma Anna, and a paper in Physics Education. The interactive demonstration that Nicola developed is applicable to medical students, secondary school lessons, and younger children when used with an appropriate age specific work sheet.

What is Gamma Imaging? It is a medical diagnostic technique which involves injecting small amount of radioactive material (tracer) in to a patient and looking to see where it goes using a radiation detector, known as a gamma camera.  The tracer is designed to be selectively absorbed into tissues of interest – e.g. radioactive glucose will accumulate in those parts of the body that are using the most energy…. Tumours have a high energy demand, so they will show up bright in the image. This is a useful tool for doctors if they want to see if a cancer has spread.

Why produce a teaching demo? It is common knowledge that well designed interactive activities increase understanding of the subject and retention of knowledge, as well as student engagement and enjoyment. However you can’t safely demonstrate real gamma imaging to students, because of the radiation hazard, quite apart from the logistics: Gamma cameras are large (room sized) and expensive. The Gamma Anna demo uses a series of analogies to explained key concepts of the imaging technique: heat, from an exothermic reaction represents the gamma radiation; tumours are represented by plaster of Paris; saline the radioactive tracer and a thermal imaging camera represents the Gamma camera. ‘Anna’ herself is a ragdoll into which the ‘tumours’ can be placed.gammaanna

Who is the demo for? Nicola tested the demo with GCSE grade students, where it served to explain principles of radiation and showed applications of physics to medicine and engineering – a topic with the potential to motivate students, including girls, to choose STEM subjects at A’ level and beyond. She also tested it with medical students, where the focus was on improving their ability to accurately advise future patients. Gamma Anna could also be used with younger children, either at an outreach event or as play-therapy if they, or a relative, need to undergo gamma imaging.  In each case age/course appropriate work sheets should be used; examples are available for download from the link above.

In conclusion… Gamma Anna is cheap, safe and easy to make and use. The largest expense being a thermal imaging camera, but mobile phone adapters are suitable, can be bought for less than £200, and are a useful resource for other demos too.