X Close

ASPIRES research: project blog

Home

Studying the science and career aspirations of 10-23 year olds.

Menu

Archive for the 'Curriculum Changes' Category

What shapes people with disabilities’ scientific aspiration and capital? Reflexions on science capital and science museums

By ASPIRES Research, on 20 January 2023

Guest blog by Gabriela Heck

A Brazilian PhD student, Gabriela Heck, visited the ASPIRES team at UCL during her 6-month research exchange to the UK. In this blog she shares how the ASPIRES research helped inspired her own PhD project on inclusion in STEM for people with disabilities.

I first came across the ASPIRES project in 2021 and the findings helped inspire my own PhD research in Education, in Brazil. The ASPIRES findings show how various factors shape young people’s science identities and aspirations and, in particular, how these are heavily influenced by social inequalities (such as social class, gender and ethnicity) which in turn influence whether a young person has opportunities to experience, do well in, feel connected with, be recognised in, and continue with STEM. However, when we look closer at these inequalities in STEM, there is another underrepresented group, whose exclusion, I believe, needs to be considered more in depth: people with disabilities.

The exclusion of people with disabilities from STEM is an issue that I feel passionately about. I became aware of the exclusion of the Brazilian Deaf community from science while studying towards my Biology undergraduate (2018). There was a lack of materials and resources adapted to sign language, which can deter this community from feeling included and stop them from engaging with science.

In my PhD, I hypothesise that a lack of representation and accessibility in science leads people with disabilities to feel that this field is not for them and creates unequal patterns in scientific literacy, scientific aspiration and science capital.

To challenge these inequalities and promote the inclusion of people with disabilities in the STEM field, together with supporting young people’s science aspirations and science capital, my PhD proposes to look at how science museums can (better) support the science-related inclusion and aspirations of people with disabilities.

My research aims to identify both different accessibility features in science museums that can help people with disabilities to engage with science and also the forms of exclusion that are present in exhibitions and museum spaces. I will interview visitors with disabilities and understand their perspectives and experiences regarding science museum accessibility and their perceptions of how welcoming they feel that science museums are for visitors with disabilities. I also hope to explore how science museums can contribute to individuals’ science capital.

Between August 2022 and January 2023, I undertook a small-scale research project at Newcastle University and in October 2022 I was pleased to visit UCL to talk with the STEM Participation & Social Justice group about my PhD project and other activities that I have developed in Brazil, related to Science Capital.

Professor Louise Archer (ASPIRES Project Director) stood on the left of Gabriela Heck in an office with books on the shelves behind them.Louise wears a green flowery top and Gabriela has on a bright yellow jumper.

Professor Louise Archer (ASPIRES Project Director) with Gabriela Heck.

Since 2021, I have been translating and summarising materials produced by the research group into Portuguese, and have made them available on social media, with subtitles and with translation to Libras (Brazilian Sign Language). I worked with the STEM Participation & Social Justice group (which the ASPIRSES project is a part of) to translate the YESTEM Equity Compass into Portuguese, and helped translate the Primary Science Capital Teaching Approach too.

I believe that Science Capital is a useful concept for understanding inequalities in science participation and the factors that lead to the (dis)continuation of young people in scientific fields after compulsory education. When focusing on people with disabilities, it can help us to understand the causes of their exclusion and foreground the lack of accessibility and representation as well as helping us to consider measures to support their inclusion and wellbeing in STEM. Breaking down barriers so that more people can be inspired by and engage with science not only expands the number of people who can work in STEM jobs, diversity also benefits and enriches STEM, enhances innovation and can help create a fairer and more inclusive society.

Further Reading

You can find Gabriela’s Portuguese summary resources on Instagram, Twitter and YouTube.

Improving science participation: Five evidence-based recommendations for policy-makers and funders

By Rebekah Hayes, on 30 May 2018

Improving science participationThis post was originally written for the IOE blog on behalf of our sister project Enterprising Science. You can find more information about Enterprising Science on the IOE website.

To continue with science post-16, young people must achieve certain levels of understanding and attainment. Crucially, they must also feel that science is a good ‘fit’ for them – that science is ‘for me’.

Drawing on more than five years of research conducted by the Enterprising Science project in classrooms and out-of-school settings, the team have developed five key recommendations for policy-makers and funders who want to broaden and increase young people’s engagement with science. These recommendations are set out in Improving Science Participation, a new publication launched earlier this month at the government’s Department for Business, Energy and Industrial Strategy (BEIS).

The recommendations focus on the concept of science capital. Research has shown that science capital can help explain variable rates of science engagement and participation across formal and informal settings. It can also help to frame interventions designed to support engagement.

The concept of science capital originally emerged from the ASPIRES project, a longitudinal study tracking young people’s science and career aspirations. Analyses from ASPIRES show that the more science capital young people have, the more likely they are to aspire to study science in the future.

Young people with lower levels of science capital tend not to see themselves as ‘sciencey’ and are therefore less likely to want to continue with science. Students who do not see science as meaningful and relevant to them find it more difficult to engage with the subject.

With this in mind, Enterprising Science has published the following recommendations for improving science engagement and participation:

  1. Ensure that, within your context, young people’s encounters with science (in and beyond the classroom) are based on the science capital educational approach.

This approach links science with what matters to students, with their daily lives and what matters to them. It:

  • values activities outside school and connects science with the students’ own community;
  • tweaks lesson plans to help students see how science relates to their everyday lives and how it is useful in any job they may aspire to.

Qualitative and quantitative data show that over the course of a year, teachers who used thescience capital approach recorded marked improvements in their students’ attitudes to science, their aspirations for studying science at A-level, and a host of other benefits. While developed in secondary science classrooms, the principles underpinning the approach are applicable across a wide range of contexts, including primary schools as well as informal settings, such as science centres, museums and other organisations concerned with science engagement and communication.

  1. Focus on changing institutional settings and systems – rather than young people.

To date, many attempts to increase engagement with science, whether in the classroom or the informal sector, have focused on the young person, trying to identify ways they need to be fixed or changed. Instead, the science capital approach focuses on changing settings, or what is termed, the ‘field’. Field is a sociological concept that relates not only to a physical setting, but also encapsulates the range of social relations, expectations and opportunities in a given environment.

  1. Take the long view: move from one-off to more sustained approaches.

Engaging more – and more diverse – young people with science is not an easy goal and requires more than a simple quick fix. Whether in schools, or informal settings, changing the field takes time and requires reflection.

  1. Use science capital survey tools appropriately.

Over five years, the Enterprising Science project has developed a survey tool instrument to measure young people’s science capital. The survey can be used to measure baselines or capture changes resulting from sustained, longer term interventions. Contact our team for copies of the student and/or adult science capital surveys and for advice on how to interpret the data: ioe.sciencecapital@ucl.ac.uk.

  1. Improve connectivity: create pathways, progression and partnerships.

Evidence shows that young people with high science capital report engaging with science across a range of settings. This means science capital is generated across a range of experiences. Greater connectivity within and between settings should help to build science capital and support science engagement. Research also shows that when individuals can connect their experiences across settings, engagement can flourish. See the report for our recommended action points on how to improve connectivity.

To find out more about these recommendations and to understand the research behind them, download the Improving Science Participation report.

For hard copies of the report please contact ioe.sciencecapital@ucl.ac.uk.

Photo: O. Usher (UCL) via Creative Commons

“It’s kind of putting us in a difficult situation as students”: Responses to this year’s A Level Reforms

By qtnvacl, on 22 August 2017

Last week’s A level results day marked a number of milestones. Notably, this was the first year that students in England sat linear (also referred to as ‘tougher’) A levels; students studying one of the already-reformed A level subjects sat courses with little, or in most cases no, coursework and a final exam testing their knowledge of both years of the course rather than only the final year. There was plenty of analysis surrounding this – the headlines informed us that the reforms may have played a part in boys overtaking girls in top grades and that there was a drop in attainment for those subjects which have already been reformed, which includes all three sciences.

pexels-photo-289740Missing from much of this analysis was any student opinion of these reforms – what did the young people affected by these changes think of them? Last winter, as part of a data collection cycle for the ASPIRES 2 study[1], we interviewed 51 Year 13 students from around the country ahead of their A level exams. We asked these students, and some of their parents, about their schooling and future plans. Although the A level reforms were not a planned interview topic, 10 of these students, and a small number of their parents, shared their thoughts about the changes – mostly in response to a question about the challenges faced by young people today.

In this blogpost we share the emerging themes from these conversations, in order to shed light on student opinion of these part-introduced reforms. However, please note that due to the small sample size we recommend more in-depth research into this topic before drawing meaningful conclusions.

As the blog’s title (a quote from one of our students) indicates, many students felt pressured by the new reforms. The impact of this pressure upon mental health was not unexpected by some education experts; the “hastily reformed curriculum… created unnecessary stress and concern for pupils and teachers alike” said Rosamund McNeil from the National Union of Teachers ahead of last week’s results day.

The “memory game”

Some students disliked that the new linear courses required them to remember additional material for their A level exams. It’s “almost a memory game” said one student, Victoria1[2] (studying A level Maths, Politics, Design & Technology), who said that it felt like students were now “expected to recite something word for word… From two years ago, rather than just learn it, do it, learn it and then it would like stay there.” Worryingly, this was also cited as a reason to drop certain subjects, especially those seen as particularly content-based. For example, Louise (A level Psychology, Dance, Combined English) used the reforms as a justification for dropping Biology, her only STEM subject; “Um, I am pleased I dropped it, not necessarily because I didn’t enjoy it… there was just so much, but it was more, the fact was like how A levels are now structured – so I did all my AS stuff, did my AS exams, but for this year I’d have to remember everything from last year and then a whole new set of stuff.

Another student added that this requirement to remember additional information may lead to decreased enthusiasm for, or interest in, some subjects; “I think because [the AS and A2 exams] have been stuck together, people are just losing focus over time… that’s definitely an issue. Like I know it’s definitely hard to stay motivated with what you’re doing” said Neb (A level Physics, Maths, Further Maths).

No room for mistakes

The reforms also meant that some students felt pressure not to ‘make a mistake’ in choosing or taking their A level options, as many thought that the reforms made it more difficult to drop, change or retake options. Two students we spoke to raised concerns that the reforms limited their access to the possibility of retaking exams, which will now only be available once, instead of twice, a year; “I prefer the old system where we did the AS papers and they counted towards the A2 and you could retake them” said Preeti (A level Physics, Biology, Chemistry, Maths). “There’s just so much stuff to remember, there’s so much content and you just feel so pressured to remember everything, and you get stressed out… if [students] did want to like resit they’d have to redo the whole year, so it’s a lot” said Celina1 (A level Psychology, Sociology, History), who was also worried that the A level changes meant that no suitable past papers were available to her.

Reforms come with uncertainty

Being the first cohort to experience these reforms was also something that played on the minds of the students and parents we spoke to; “changing the A Levels to being linear, it’s kind of put my year group in a slightly difficult situation” said Bethany2 (A level English Literature, Sociology, Applied ICT). This was seen not only from the perspective of students but also teachers; “the teachers haven’t really taught this type of course before” said Bethany2, something echoed by one student’s parent who called the changes “disruptive” and thought this year’s students had been put at a disadvantage as the first year group to experience the changes.

 

Strikingly, most students who raised the topic of the new A level curriculum with us expressed views that this year’s reforms contributed to the exam pressure they were already under. Whether this is something which will lessen as the reforms continue to be rolled out over the coming years remains to be seen. In any case, insights from our research suggest that the government, schools and parents must be aware that young people are concerned that the new A level curriculum places unwelcome additional pressure on students.

 

By Emily MacLeod, Research Officer on the ASPIRES 2 Project


[1] This was the fifth round of interviews with this cohort. The ASPIRES teams first started speaking to these young people and their parents when they were 10. For more information about, and findings from, this longitudinal project please visit: ucl.ac.uk/ioe-aspires

[2] Pseudonyms are used throughout, to protect the identity of all interview participants.