A Note of Warning Blog 2: The Nirvana of Multi-Hazard Warnings
By Amanda Gallant, on 13 October 2022
By Carina Fearnley
On International Day for Disaster Risk Reduction (IDDRR) I write this blog article with Mt Vesuvius volcano in the corner of my vision. It reminds me of the immense challenges faced by the multiple hazards that volcanoes produce, often for populations that are not fully aware of the diversity, strength, and rapidity of these hazards, whether erupting or not. For 2022 the focus of IDDRR is on Target G of the Sendai Framework to: “Substantially increase the availability of and access to multi-hazard early warning systems and disaster risk information and assessments to people by 2030.” Every year we witness several complex multi-hazard situations, whether they coincide, are caused by one another, or generate cascading hazards. The interaction between them is simply a disaster manager’s nightmare.
During the COVID-19 pandemic we saw the challenges of having to evacuate people from flooding, or earthquakes to evacuation sites, where isolating from COVID-19 was difficult to achieve. These types of difficult DRR actions place pressure on managing hazards, some of which may be predictable, as others may emerge unexpectedly. Working across different hazards presents significant challenges to agencies, who have to make sense of what to do when there is new data coming in, often in isolation to other hazards, and conflicting action typically with a lot of uncertainty. This whole process is not made any easier by the added complexity of anthropogenic global warming, a range of relatively new human-made threats from the technologies we have developed, and the interactions and exploitations we have had on the environment.
Therefore it is appropriate on IDDRR to ask how is it possible to set up a multi-hazard warning system? The World Meteorological Organization produced a Multi-Hazard Early Warning Systems: A Checklist in 2018. This phenomenal document attempts to “bring together the main components and actions to which national governments, community organizations and partners within and across all sectors can refer when developing or evaluating early warning systems”. It is, however, not a comprehensive design manual and provides limited insights into how to actually DO multi-hazard early warning systems (MHEWS). The report does however, help highlight the multiple facets involved that work beyond a single hazards warning system, as shown in figure 1.
The Third Multi-Hazard Early Warning Conference (MHEWC-III) at the 7th Global Platform for Disaster Risk Reduction 2022 was held in Bali and I went with full anticipation to learn how to do MHEWS. Instead I established:
- No-one really knows how to do multi-hazard warnings
- People are talking about the last mile but far less about the first mile process
- Warnings are still generally spoken of as technocratic tools
- There is a huge interest in warnings and how to make them efficient, and a clear need for some academic expertise / input / verification
Part of the issue is that there is not enough analysis of multi-hazard events to establish how successful or not the management of the situation was, in part because it is hard to establish whether if different choices had been made, the impact would have been lesser or greater. Simulations and drills can provide significant insights.
There are however some brilliant examples of MHEWS that provide some strong indicators on how best to do MHEWS, the first can be drawn from volcanic hazards, and the second from women-led groups.
The Ultimate Multi-Hazard
Volcanoes often generate multiple hazards that occur at the same time, affecting different locations. For example a pyroclastic flow can affect those within close proximity of the volcano, but volcanic ash generated can affect populations thousands of kilometres downwind, creating transport and logistical problems. These are just the primary hazards. Secondary hazards can be generated such as landslides, tsunami, famine, climate change and many more. Each of these hazards requires different actions and considerations, yet are simply part of the challenge of managing a volcanic eruption. Different experts within the disciplines Volcanology, Meteorology, Seismology, Tsunami, have to work together to monitor volcano generated hazards. Often volcanoes occur on or near national borders and have to work across different jurisdictions on local, regional, and national levels. Volcano observatories have been managing these multiple and complex hazards since 1841 when the Vesuvius Observatory was founded, and have developed and implemented numerous warning systems for volcanic hazards (albeit still rather separate) that work together to reduce disaster risk reduction from volcanic hazards working across a wide range of hazard organisations, and also government, public, NGO, and private entities.
An excellent example includes the Eyjafjallajökull volcano that erupted in in Iceland during 2010 (see fig. 2). The Icelandic Meteorological Office worked with Icelandic and global scientists along with the Department of Civil Protection and Emergency Management to manage the local hazards of lava flows, volcanic ash, and jökulhlaups, alongside the secondary impact on agriculture and tourism. In addition the warnings involved liaising with the London Volcanic Ash Advisory Centre, World Meteorological Organization, and International Civil Aviation Organization to manage the ash risk to aircraft all over Europe. Such a complex and multi-hazard warning system built upon well established relationships, that had been tested via simulation scenarios, and took advantage of local and national networks to provide effective warnings.
Volcanoes provide valuable insights into how to operationally work across multiple agencies to collaborate when a situation produces a wide range primary hazards, and secondary ones too. Some key lessons that can be identified from the volcano community on how to operationalise MHEW:
- Translation and multi-way communication are required to ensure that all involved in designing and assigning warnings understand what information is credible and relevant for each hazard – this involves working across the various actors providing hazard information, and overcoming lots of silos.
- Warning systems are complex and nonlinear. A consideration of different understandings of uncertainty and risk is required for decision-making processes in assigning warnings and actions across the hazards, including institutional and cultural dynamics of the organisations involved.
- Whilst standardisation of warning systems is vital to convey information to a wide range of stakeholders, standardisation is difficult to implement due to the diversity and uncertain nature of hazards at different temporal and spatial scales.
These recommendations assist operationally to bring together MHEWS, but how can these work with the most vulnerable, the people affected?
Insights from Women in Fiji on how to develop inclusive and accessible multi-hazard early-warning systems
Across the Asia-Pacific region there have been a number of incredibly successful MHEWS that have not only captured the multi-hazard complexities, but also been inclusive and accessible. Four key women-led and disability-inclusive MHEWS have been established in the Pacific Region: Vanuatu’s Women Wetem Weta, Papua New Guinea’s Meri Got Infomesen, Fiji Disabled People’s Federation Emergency Operations Centre, and Fiji Women’s Weather Watch. These are all discussed in the Inclusive and accessible multi-hazard early-warning systems report published by United Nations Office for Disaster Risk Reduction, Shifting the Power Coalition, ActionAid – Australia, and Women’s International Network for Disaster Risk Reduction.
Looking specifically at the Fiji Women’s Weather Watch, the initiative was driven by two key events, flooding in North Fiji in 2004, and the aftermath of Cyclone Mick in 2009, when it became clear that local women had been excluded from designing, planning and implementing disaster reduction efforts, and excluded from the relief efforts. Fijian women led this initiative to monitor and warn about weather through exchanging with and interpreting messages from the Fiji Meteorological Service, receiving training to develop their communication and engagement skills to ensure useful translation of the technical information into messages in local languages to which people can respond (see fig. 3).
Core to the success of these MHEWS is highlighted in the report as: strong connections with communities, and regular and inclusive engagement with communities to facilitate trust and positive relationships between programme implementers and community members. In essence the more inclusive a MHEWS is, the more likely initiatives will be sustainable and reflect the needs and priorities of all community members, for a range of hazards. Once the network is established, whether the warning is for flooding, COVID-19, volcanic eruptions, it works to provide multi-directional communication to empower those that make the key decisions on safety, and facilitate open dialogue, questions, clarity, concerns, advice etc. By building on existing networks MHEWS do not add to the everyday, but become part of it Ultimately these MHEWS examples demonstrate that to be effective, inclusive and accessible, MHEWS should integrate local and traditional knowledge and draw on the wealth of local disaster risk knowledge from all community members to enhance the overall effectiveness of MHEWS. They remain exemplary for the rest of the global community.
Working globally for MHEWS for all
Following the announcement by António Guterres UN Secretary General on 23rd March 2022, for countries to ensure that citizens worldwide are protected by early warning systems against extreme weather and climate change, the focus on the role of warnings as part of early action has been heightened globally, as everyone asks, how can we do MHEWS better? The World Meteorological Organization (WMO) is spearheading this new action and will lead the effort and present an action plan in November at this year’s UN climate conference (COP 27) in Egypt. Numerous agencies are now keen to contribute to the WMO led initiative, as everyone is working to achieve the target. More than ever we need to bring together case studies and lessons learnt, positive or negative, to help build better MHEWS for all.
To celebrate the focus on warnings for this IDDRR, the UCL Warning Research Centre launches our Warnings Briefing Notes series, supported by the Global Disaster Preparedness Center and The Anticipation Hub. These two-page documents are designed to provide a quick and accessible insight into various aspects of warnings, providing the state of the art of research, core needs, and high-level guidance and recommendations. These notes also provide a core case study, and graphic to help illustrate the key issues, alongside recommended sources for additional information. We are launching the first three Warnings Briefing Notes today, and a series of notes will be launched in the run up to COP27 to provide further information about the various aspects of warnings.