X Close

UCL Translational Research Office blog

Home

Menu

Archive for the 'Articles' Category

Early Career Innovators: Validating AAV Gene Therapies for Epilepsy, Cell & Gene Therapy TIN

Alina Shrourou23 June 2021

In this Cell & Gene Therapy TIN interview as part of the Early Career Innovators series, recognising the amazing translational work being done by postdoc and non-tenured researchers within the UCL Therapeutic Innovation Networks (TINs), Dr Marion Mercier highlights her Cell & Gene Therapy TIN Pilot Data Fund awarded project, involving the validation of novel gene therapies for epilepsy.

What is the title of your project and what does it involve?

Human brain tissue is routinely excised during epilepsy surgery, and can, given the right conditions, be maintained alive in slice culture for extended periods of time. My project, entitled “Validating novel AAV gene therapies for epilepsy in human organotypic slices”, involves firstly to optimise human tissue slicing and culture protocols for the successful maintenance of this tissue, and secondly to establish efficient viral transfection methods in these human organotypic slices. The specific virus used encodes for a protein that suppresses neuronal excitability and as such is being developed as a gene therapy strategy for epilepsy. Thus, the project aims to establish a human tissue model in which to validate and screen this, and future, gene therapies for epilepsy developed within the DCEE.

Filled and stained human pyramidal cell.

What is the motivation behind your project/therapeutic?

Epilepsy affects 1% of the global population, and 30% of patients are pharmaco-resistant, with significant associated morbidity. Several novel gene therapies for epilepsy have recently been identified and developed within the DCEE, and offer real hope for these patients. However, while results from animal models have been promising, understanding how these genetic manipulations, and the adeno-associated viral vectors (AAVs) used to deliver them, will behave in the human brain still poses a significant challenge. Furthermore, the irreversible nature of gene therapy makes transitioning from animal models to human patients particularly risky. By establishing human organotypic slices to extend the viability of excised human brain tissue, and thereby enabling transfection with AAVs (which take 2-3 weeks to express), I aim to develop a human neuronal tissue model in which to screen and validate these novel gene therapies for epilepsy and thereby help to bridge this important translational gap.

Can you highlight any challenges have you experienced as an early career researcher in the cell and gene therapy/translational research space?

Obtaining funding for your own independent ideas and research is particularly challenging as an early career researcher, and is often impossible without considerable preliminary data. This makes getting started on new projects, and gaining the independence necessary to progress on to more senior, permanent positions, especially difficult. Furthermore, as an early career researcher working at the intersect between clinical and more basic science, I have found the complex translational research pathway quite challenging to navigate.

What do you hope to achieve in the 6 months duration of your project?

I have two main objectives for the 6 months duration of the project. The first is to establish good quality human organotypic slices that are viable for up to 3 weeks, and the second is to develop effective viral transfection methods in these slices. I will be transfecting the tissue with AAV-hCaMKII-EKC-GFP, a virus that aims to increase expression of an enhanced K+ channel (EKC) in human excitatory neurons, and which has shown promise as a gene therapy strategy in animal models of epilepsy. Thus, while optimising protocols for viral transfection of human organotypic slices, I hope to also start to collect clinically-relevant data pertaining to the safety of the viral transfection and the selectivity of the expression. I am currently in the first phase of the project and have already improved the human tissue slicing protocol and started to optimise the slice culture methods.

Why did you want to apply to the Cell & Gene Therapy TIN Pilot Data Fund?

In order to start this project, all I required was two specialised pieces of equipment and a little extra funding for consumables. The Cell and Gene Therapy TIN Pilot Data Fund is ideally suited for this, and therefore provides the perfect stepping stone for getting started and obtaining quality preliminary data with which to then apply for further funding. Furthermore, it has enabled me to progress my research in a more translational direction, and to learn more about the translational pathway and all of the steps involved in getting a therapy from the lab to the clinic. This will not only be an invaluable help in establishing and advancing this current project, but also in informing my future research plans.

We are currently in the process of determining our funding availability for the Cell & Gene Therapy TIN for 2021. Please join the Cell & Gene Therapy TIN and sign up to the TIN newsletter to keep updated. 

How did you find the process for the TIN Pilot Data Fund? What did you learn?

The application process was rewarding and a great learning experience. I attended the ACCELERATE coaching session on pitching projects, through which I learnt a great deal about how to communicate my ideas effectively, concisely and convincingly. Receiving this training prior to the interview made the final pitching exercise exciting rather than daunting and made it an overall positive experience through which I received a lot of constructive feedback. This has given me more confidence in my ideas and capabilities and pushed me to be more competitive and ambitious in driving my research forward.

About Dr Marion Mercier

Marion Mercier

Dr Marion Mercier a postdoctoral researcher in Prof. Dimitri Kullmann’s laboratory within the UCL Institute of Neurology’s Department of Clinical and Experimental Epilepsy (DCEE). After an undergraduate degree in Psychology at Reading University and a year as a technician working on drug discovery for epilepsy, Marion moved to Bristol to do her PhD in the laboratory of Prof. Graham Collingridge where she studied glutamate transmission and synaptic plasticity in the hippocampus.

Throughout her postdoctoral work, her research interests have evolved at the intersect between basic and clinical neuroscience, focusing specifically on interneuron plasticity and synaptic function in both physiological states and pathological conditions such as epilepsy. Recently, she has begun to study human cortical function in resected human brain tissue, and is interested in establishing human neuronal models from this tissue in order to validate the gene therapy strategies for epilepsy currently being developed within the DCEE.

Early Career Innovators: Novel Therapies for a Rare Metabolic Disease, Cell & Gene Therapy TIN

Alina Shrourou3 June 2021

In this Cell & Gene Therapy TIN interview as part of the Early Career Innovators series, recognising the amazing translational work being done by postdoc and non-tenured researchers within the UCL Therapeutic Innovation Networks (TINs), Dr Ellie Crompton highlights her Cell & Gene Therapy TIN Pilot Data Fund awarded project, involving new therapies for rare disease Maple Syrup Urine Disease (MSUD). 

What is the title of your project and what does it involve?

My project is entitled “Development of novel therapies for Maple Syrup Urine Disease (MSUD)”. MSUD is a rare, paediatric, metabolic disease caused by mutations in three genes. When mutated, the body cannot produce a functional enzyme complex that is used to break down branched chain amino acids (BCAAs) in the liver. This leads to a build-up of these BCAAs and metabolic decompensation of the patient. In this project, we are attempting to treat the underlying disease pathology using a bioengineered novel therapy, developed at UCL, with the aim that this will lead to improved BCAA metabolism, provide neuroprotection and prolong survival.

What is the motivation behind your project/therapeutic?

Currently, MSUD patients are commonly treated with strict dietary management, or in some cases patients are offered a liver transplant to correct the underlying disease. Both of these approaches have major pitfalls. The low-protein diet needed to avoid build-up of BCAAs is often said to not be palatable and this leads to compliance issues in infants and children prescribed this diet. A lack of available donors also severely limits the possibility of liver transplant. By restoring metabolic function in MSUD patient cells, we have the potential to allow the body to produce the enzymes necessary to break down BCAAs and alleviate the need for sub-optimal diet management and transplant strategies. Furthermore, our therapy is unique because it will be relevant to all MSUD patients regardless of their specific genotype or phenotype. If successful and translated to the clinic, this has the potential to fulfil an unmet medical need.

Can you highlight any challenges have you experienced as an early career researcher in the cell and gene therapy/translational research space?

As a Research Fellow in my first post-doctoral position, I am beginning to navigate my way around the field in which I work. Before I started this post, I was unaware of the need to start generating ideas that could lead to fellowship applications at the very beginning of your post. The need to bring in funding of your own whilst only just starting your career can be daunting, especially when a majority of grant applications require you to have certain level of seniority to be eligible. There is some pressure that ECRs need to secure grant funding to progress their career, but this can be difficult when fresh out of a PhD, with one publication and no previous track record of successful grants.

Why did you want to apply to the Cell & Gene Therapy TIN Pilot Data Fund? How has it helped you?

The work proposed in this project is really exciting and is definitely worth exploring. I think there are some great advantages to the novel therapy approach we are researching, and without the TIN grant, this work may not have been possible. The TIN pilot fund has given me the opportunity to generate invaluable preliminary data that can support future, larger grants. There is the age-old dilemma of needing good preliminary data for large grant applications, but having no money to generate it. The TIN funding has allowed me to begin this process. I wanted to apply for this funding to kickstart my career in the cell and gene therapy field, allowing me to build my portfolio of work only a few months after finishing my PhD.

The Cell & Gene Therapy Therapeutic Innovation Network (TIN) are offering the opportunity to appear in a resource to showcase and promote the diversity/depth and breadth of expertise within the Cell & Gene Therapy space across UCL. Appearing here will raise your profile and visibility in the field of Cell & Gene Therapy, not only across UCL but with also with external academic and industrial partners leading to rewarding collaboration and funding opportunities.

UCL Researchers in the Cell and Gene Therapy field are advised to register their details to appear in the resource. To create your research profile for inclusion please click here to complete the online form.

How did you find the process for the TIN Pilot Data Fund? What did you learn?

Applying for the TIN Pilot Data Fund was a simple process with an application form consisting of only a couple of pages, rather than a large grant application with tens of pages. This made it feel far less intimidating. After being told I was shortlisted, the offer of a coaching session from ACCELERATE to improve the three-minute, 2-slide presentation that was requested was incredibly helpful. I learnt which elements of the project and application I should highlight, and which to prepare answers to questions, but not immediately bring up. The coach was very helpful and really useful experience for my career.

Learn more and sign up for ACCELERATE Potential, an online, self-paced translational training programme outlining key elements of Translational Research – NOW OPEN 

What do you hope to achieve in the 6 months duration of your project?

Within the 6-month duration of this project I hope to generate preliminary data that can elucidate whether a broadly applicable pan-genotype approach is more beneficial, and whether novel therapy is better than other therapies currently under development. The progress of my project has been slowed considerably due to Covid-19 and the challenges this has produced, but I am hopeful that we can generate a good package of data at the end, even if it is not entirely the same as that which was proposed.

About Dr Ellie Crompton

Ellie Crompton headshot

Dr Ellie Crompton is a Research Fellow within the Maternal and Fetal Medicine department at the EGA Institute for Women’s Health. After having completed her PhD at Royal Holloway, University of London, Ellie joined UCL in August 2020.

Her current research aims to use gene therapy and gene editing techniques in a range of paediatric diseases with the goal to develop potential new therapeutic approaches.

Early Career Innovators: Repurposing mutant gene reactivators for Pancreatic Cancer, Repurposing TIN

Alina Shrourou13 April 2021

In this Repurposing TIN interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by postdoc and non-tenured researchers within the UCL Therapeutic Innovation Networks (TINs), Dr Pilar Acedo highlights her Repurposing TIN Pilot Data Fund awarded project, involving the repurposing of gene P53 reactivators to treat pancreatic cancer.

What is the title of your project and what does it involve?

My project is entitled ‘Repurposing p53 reactivators for the treatment of pancreatic cancer’. TP53 is frequently mutated in pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic neoplasms, and these mutations are associated with poor outcomes, making mutant p53 (mtp53) an attractive target. Having higher levels of reactive oxygen species (ROS) compared to normal cells, cancer cells are more sensitive to further oxidative insult.

Building on this, in this TIN awarded project, I decided to take advantage of patient-derived models we had previously developed in our lab to assess the efficacy and mechanism of action of combining a P53 reactivator with Photodynamic Therapy (PDT), a light-based therapy which promotes ROS overproduction. I anticipate this strategy will exert a synergistic anti-tumour effect leading to oxidative damage and cell death of mtp53-harbouring cancer cells. The RNA-sequencing and efficacy data derived from this project will be used to apply for follow-on funding to move our research project down the translational pathway.

What is the motivation behind your project/therapeutic?

Pancreatic cancer is the 5th most deadly cancer worldwide (~432,000 deaths/year) and is projected to rank 2nd by 2030. PDAC outcomes are very poor (5-year survival rate <9%) and mtp53 expression correlate with poor prognosis. Adjuvant treatment with gemcitabine following surgery is the standard of care, however, <20% of patients are found eligible for surgery. Aggressive chemotherapy combinations, restricted to fit patients, only marginally improve outcomes so novel therapeutic strategies are urgently needed. Using a therapeutic strategy that restores the tumour suppressor functions of mtp53, and induces oxidative stress (ROS), has the potential to kill cancer cells. However, this strategy for PDAC therapy remains underexplored.

Considering the limited benefits provided by current treatment options, the variety of dysregulated signalling pathways in PDAC, and that mtp53 confers chemotherapy resistance, targeted and combination therapies hold potential to improve patient outcomes. I propose a novel approach to synergistically target the impaired antioxidative response of cancer cells, inducing extensive cell death. I expect the proposed combination to be more effective than chemotherapy alone, with significantly less systemic side effects, enabling treatment of less fit patients.

Pilar Acedo in the lab

Can you highlight any challenges you have experienced as an early career researcher in the repurposing/translational research space?

As an early career researcher in the translational research field, obtaining funding to perform your own independent research is challenging and usually requires having preliminary data already available. Gaining access to patient-derived samples can also be a tricky and slow process. I could also say, surviving in academia as an early career researcher, without a permanent position is on its own, a big challenge! I have also found it challenging to develop a network of collaborators and partnerships, particularly with industry. Moreover, understating the complexity of the translational research pathway, including intellectual property (IP), and developing an entrepreneurial mind set, requires specific training.

Why did you want to apply to the Repurposing TIN Pilot Data Fund?

I had obtained some preliminary data supporting this project, but which needed further validation. The Repurposing TIN Pilot Data Fund therefore was the perfect scheme to take this work forward, while also allowing me to lead and manage a grant from scratch, fostering my career development, and supporting my career goal of becoming an independent investigator. I expect data derived from this project will attract follow-on funding to accelerate our research project into the next phase in the translational pathway.

Join the Repurposing TIN

How did you find the process for the TIN Pilot Data Fund?

I think the guidelines were detailed and clear. The application process was well-organised, with excellent communication from the TIN Pilot Data Fund team, of which I am very grateful for the help throughout the process. I also truly appreciated the constructive feedback and advice provided by the committee.

Learn more about the support provided through the TINs

The ACCELERATE training programme has been very important in my translational progression – I think I have attended the majority of the workshops! Prior to the submission of my application, I particularly valued the seminars on IP, Entrepreneurship Skills for Researchers and ‘Grant Writing and Data Management for Translational Research’. Additionally, the pitch coaching we received was key to winning the award.

What do you hope to achieve in the 6 months duration of your project?

In this proof-of-concept study, I plan to evaluate the potential of a p53 reactivator in combination with a ROS-mediated therapy as a new therapeutic strategy for pancreatic cancer, using patient-derived models available in the lab. The resulting RNA-sequencing data will improve our understanding of the mechanisms underlying PDAC vulnerability/resistance to therapy and identify new therapeutic targets. I hope this study will constitute the foundation for subsequent grant applications to move the project closer to clinical translation.

About Dr Pilar Acedo

Pilar Acedo Headshot

Dr Pilar Acedo, is a Senior Research Fellow at the UCL Institute for Liver and Digestive Health, in the Division of Medicine, based at the Royal Free Hospital campus. After receiving her PhD in Genetics and Cell Biology from the Autonomous University of Madrid (Spain), Pilar held a postdoctoral position at the Karolinska Institute (Sweden), before joining UCL in October 2015.

Her current research aims to generate patient-derived cancer models as preclinical tools to study disease progression and to predict treatment response. Pilar investigates novel combination therapies to treat pancreatic and bile duct tumours, using nanomedicine and light-based therapies. Her research interests also include the development of biomarkers and imaging tools for the early detection of pancreaticobiliary cancers, using non-invasive approaches (Follow Pilar on Twitter: @pilar_acedo).

Early Career Innovators: Understanding the Role of Brain Oxygenation in Multiple Sclerosis, Devices & Diagnostics TIN

Alina Shrourou17 February 2021

In this next Devices & Diagnostics TIN interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by early career researchers within the UCL Therapeutic Innovation Networks (TINs), Dr Frédéric Lange highlights his Devices & Diagnostics TIN (co-lead by the UCL Institute of Healthcare Engineering’s Translational & Industry Delivery Group) Pilot Data Fund awarded project, “Understanding the role of brain oxygenation and metabolism in the pathophysiology and prognosis of relapses and progression in multiple sclerosis”.

Please give an overview of your research and the project that has been funded by the TIN Pilot Data Fund.

I am a biomedical engineer/physicist with a focus in biophotonics. Since I started my PhD, I’ve been working on using near infrared light to monitor the human brain physiology. Indeed, light in that range can probe deep tissues like the brain, giving us access to very useful information on tissue oxygenation or metabolism. If you are interested in that subject, I recommend consulting our public engagement website, https://metabolight.org, that explains the basics of the physics and engineering of what we do, and how we use our systems in the clinic.

The title of my TIN Pilot Data project is “Understanding the role of brain oxygenation and metabolism in the pathophysiology and prognosis of relapses and progression in multiple sclerosis”. In this project, I will use an optical instrument that I developed with some colleagues, to collect information on brain’s oxygenation and energy levels in people with multiple sclerosis (pwMS).

Frederic Lange research

What is the motivation behind your project/therapeutic?

MS is the most common cause of non-traumatic disability in young adults, affecting 131,720 people in the UK. UCLH alone treats more than 5000 people with MS. Despite advances in treatments, at 17 years post-diagnosis, 11% of patients cannot walk unaided, and 18% enter a progressive form of the disease. Identifying additional mechanisms of disease progression and which patients are most likely to benefit from additional treatments therefore represents a huge unmet need.

All current MS treatments target neuroinflammation, yet substantial pre-clinical and clinical data suggests a causal role of hypoxia. We hypothesise that our instrument will allow us to identify those pwMS with the greatest such deficits, hence allowing:

  • Enrichment of future clinical trials testing interventions aimed at reversing these processes.
  • The monitoring the patient’s response to such treatment.

Why did you want to apply to the Devices & Diagnostics TIN Pilot Data Fund?

The Devices & Diagnostics TIN Pilot Data Fund was a great opportunity for me as it was perfectly fitting the stage of my current research. Indeed, I was just finishing the developmental phase of the instrument that I wanted to build, and I was transitioning to its use in the clinic. With my clinical colleague, we could start to use the instrument on patients, but we realized that a few changes were needed in order to facilitate its use in a clinical environment, so we needed to make some adjustments. However, it can be difficult to find funds at this stage of a project, as it is not an engineering project anymore, but at the same time, it is not a clinical project yet. We needed some preliminary data on patients in order to be able to apply to a more clinically focused grant. So, this kind of fund is perfect to close the gap between an engineering and clinical project.

Moreover, from a more personal point of view, this fund was a good opportunity to apply to my first independent grant, which I hope will be the first step towards my independent career.

Learn more about TIN opportunities for researchers

What do you hope to achieve in the 6 months duration of your project and what are the next steps from now?

With this project, I will be able to upgrade my existing optical instrument, so it is easier to use in the clinical environment and more robust. The fund will be used to buy the essential components needed to make these upgrades. I am currently purchasing the equipment needed. The upgrade process will occupy the first half of the project, between the hardware and the software work, and the recalibration of the system. Then, in the second half of the project, we will aim to scan as many pwMS as possible, so we can have a good set of preliminary data. This will certainly prove challenging in these trouble times, but I am confident that we will be acquire some very useful data.

About Dr Frédéric Lange

Frederic Lange headshot

Dr Frédéric Lange received his Ph.D. degree in biomedical optics from the University of Lyon and INSA de LYON in France in 2016. Since then, he has been a Research Associate with the Biomedical Optics Research Laboratory, which is part of the Department of Medical Physics and Biomedical Engineering at UCL.

His main research interests are in the development of diffuse optics instrumentation and methodologies for biomedical applications, especially for brain monitoring.

Gene Therapy explained: Changing our bodies’ recipe to treat disease

Alina Shrourou19 January 2021

Written by Linda von Nerée, NIHR Blood and Transplant Research Unit in Stem Cells and Immunotherapies at UCL.

How many pairs of jeans do you have in your wardrobe? How many genes are in your body? What are genes anyway and do you know how they can help to treat an illness?!

All is explained in this brand-new animation from us at the NIHR Blood and Transplant Research Unit in Stem Cells and Immunotherapies at University College London (UCL BTRU). Well, except how many jeans you own, that stays your secret.

Animated children asking questions about gene therapy

Young people asking questions about gene therapy in the animation ‘Gene Therapy explained: Changing our bodies’ recipe to treat disease’. Screenshot from an animation provided by KindeaLabs.

Gene therapy helps to treat some inherited diseases passed on from parent to child that don’t have a treatment or cure yet. Many different gene therapies are currently in development all over the world for many inherited diseases such as those that affect the ability of our blood’s immune system to fight off infections that make us ill.

The animation shows, Alexis and Freddie, two members of the Young Persons’ Advisory Group (YPAG) at Great Ormond Street Hospital for Children asking questions to understand what gene therapy is about. All members of the group were involved in shaping the animation and they regularly work with doctors, nurses and scientists helping to improve health care research for children. When possible, the group meets near the Zayed Centre for Research into Rare Disease in Children, where scientists look for new and better ways to treat uncommon diseases in children.

Why this Gene Therapy animation?

‘I spent most of my career as a researcher developing gene therapies for children who have an immune system that doesn’t function properly. The immune system of these children can’t protect them from infections and become life-threatening. A lot is said on the news about gene editing, less how it can help to treat inherited diseases.

Alexis and Freddie helped us to brilliantly explain just this in our animation. We hope it finds much interest and explains a ground-breaking future treatment for some inherited conditions.’ – Adrian Thrasher, Professor in Paediatric Immunology and Research Lead at the NIHR Blood and Transplant Research Unit in Stem Cells and Immunotherapies at University College London (UCL)

What was it like to work on the Gene Therapy animation?

It is a new and innovative way to treat some inherited diseases, which surprised me because I thought there were a few other remedies and cures already out there. I really like the animation, and I’m so glad it has turned out this well, (especially the hair), I am so grateful to have had an opportunity to be a part of this! – Alexis, member of the Young Persons’ Advisory Group (YPAG) at Great Ormond Street Hospital for Children

 I enjoyed being part of the animation because I have never done anything like that before. Because of the lockdown I went in my bedroom and recorded my voice on a phone which was strange, but I think the finished animation is good.’ – Freddie, YPAG member at Great Ormond Street Hospital for Children

‘It was a huge pleasure to work with Alexis, Freddie and YPAG as a group of inspiring young people involved in improving health through research. Their ideas and invaluable input made the animation so much better and very different from the first draft we presented back to them at a meeting in summer 2018.’ – Linda von Nerée, Patient and Public Involvement Lead at NIHR Blood and Transplant Research Unit in Stem Cells and Immunotherapies at UCL

‘It is such a privilege to work in the gene therapy field and see research in action. I had a great time attending the YPAG group and hearing from its members. Alexis and Freddie have done a great job!’ Katie Snell, Lead Gene Therapy Research Nurse at UCL Great Ormond Street Institute of Child Health

Young Persons’ Advisory Group (YPAG) at Great Ormond Street Hospital for Children

The Young Persons’ Advisory Group (YPAG) at Great Ormond Street Hospital for Children – young people making health care research for children better

Did you know?

Researchers estimate that we have between 20,000 and 25,000 genes in our body. We have two copies of each gene, one from each parent.

Learn more in the full animation:

‘Gene Therapy explained: Changing our bodies’ recipe to treat disease’

Let us know what you think and if you like it. Please share widely with your friends and family!

About the authors

  • Alexis – I joined YPAG when I was 8 years old and I have been a member for 5 years! Including the voices of young people is important because we are the next up and coming generation, and in a few years we will be the ones filling these roles so I think it’s important we have a say in how our future is going to be like.
  • Freddie – I am 12 years old and I joined YPAG when I was 9. I really enjoy YPAG because I learn something new every time and get to be involved in interesting things like this animation.
  • Linda – In my role, I bring together patients, members of the public, researchers, doctors and nurses to learn from each other and design research in the best possible way for those to benefit from it. Working with YPAG is a huge pleasure!

About the Young Persons’ Advisory Group (YPAG)

YPAG logo

We are a group of young people working with doctors, nurses and researchers to add our views and opinions to the development of new treatments for children. We are part of GenerationR, a network of young people improving health through research.

More at: https://www.gosh.nhs.uk/research-and-innovation/nihr-gosh-brc/patient-and-public-involvement

About the NIHR Blood and Transplant Research Unit in Stem Cells and Immunotherapies at University College London

The NIHR Blood and Transplant Research Unit (BTRU) in Stem Cell and Immunotherapies at University College London (UCL) is an academic partnership with NHS Blood and Transplant funded by the National Institute for Health Research (NIHR). It focusses on improving stem cell transplants (transfer of stem cells, which lead to new blood cells in the recipient) and the use of novel therapies, including CAR-T and gene therapy, both to treat inherited genetic disorders and to repair or strengthen the immune system’s ability to fight infection or disease. For more information, please visit https://www.ucl.ac.uk/cancer/research/centres-and-networks/nihr-blood-and-transplant-research-unit-stem-cells-and-immunotherapies or follow @BTRUinStemCells on twitter.

Contact for any questions or inquires: Linda von Nerée, Patient and Public Involvement Lead at NIHR Blood and Transplant Research Unit in Stem Cells and Immunotherapies at University College London, email: l.vonneree@ucl.ac.ukNIHR BTRU logo

Early Career Innovators: Enhancing Stathmin-2 protein in Neurodegenerative Diseases, Small Molecules TIN

Alina Shrourou5 January 2021

In the next Small Molecules TIN interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by early career researchers within the UCL Therapeutic Innovation Networks (TINs), Benedikt Hölbling highlights his Small Molecules TIN Pilot Data Fund awarded project, “Enhancing Stathmin-2 protein levels in familial and sporadic ALS/FTD”.

What is the title of your project and what does it involve?

The title of my project is “Enhancing Stathmin-2 protein levels in familial and sporadic ALS/FTD”: Cellular loss of the protein Stathmin-2 is a common hallmark of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD), two devastating neurodegenerative diseases. We aim to identify ways to modulate Stathmin-2 protein levels in cells to improve neuronal health. For this aim, we developed a high throughput screen to identify small molecules that could be used as novel therapeutics for ALS/FTD treatment.

What is the motivation behind your project/therapeutic?

ALS and FTD are fatal neurodegenerative diseases with no effective treatment available yet.
ALS, also commonly known as motor neuron disease, occurs when specialized motor neurons in the brain and spinal cord perish. Every year approximately 1700 people in the UK are newly diagnosed with this disease, with a mortality rate of 50% within the first 2 years.

Approximately 16,000 patients in the UK live with FTD. This rare form of dementia causes symptoms such as changes to personality and/or difficulties with language.

The majority of therapeutics under development would require regular, invasive lumbar punctures to administer or focus on specific disease-causing genes. However, most ALS cases are sporadic (90%) without familial history of the disease. Further, the genetic causes are very diverse. A common characteristic that is shared among most familial and sporadic cases is the loss of cellular Stathmin-2 protein levels. It was shown that overexpression of Stathmin-2 improves neuronal health in cell cultures (Klim et al., 2019 and Melamed et al., 2019). Therefore, finding modulators of Stathmin-2 expression may enable treatment of a large number of patients with various ALS and FTD disease backgrounds rather than targeting specific disease-causing genes. In addition, an oral delivery of small molecules is non-invasive and easy to administer.neurons ALS/FTD

Why did you want to apply to the Small Molecules TIN Pilot Data Fund?

We have developed a high-throughput screen in close collaboration with the Alzheimer´s Research UK Drug Discovery Institute at UCL. The Small Molecules TIN Pilot Data Fund will now enable us to perform two pilot screens with this model. Thereby, we will further increase the accuracy and reliability of our assay for large-scale screens in the future.

Furthermore, I applied for my personal development: There are very limited opportunities to apply for funding as an Early Career Researcher. Therefore, I was highly excited to be able to apply for the Small Molecules TIN Pilot Data Fund. From the start of this project, I could improve many of my skills in the lab and outside.

Join the Small Molecules Therapeutic Innovation Network

How did you find the process for the TIN Pilot Data Fund? What did you learn?

It was very exciting! I was never involved in a grant application before, so everything was very new to me. During the process, I attended two ACCELERATE training workshops. In the first one, I learned how to write more precise whilst not too scientific for my written application. Especially as a non-native speaker, this also will be a great help for future applications. However, the pitch was the most exciting part of the process. Explaining the innovation and importance of your project in only 2 minutes is very challenging and the ACCELERATE workshop was extremely helpful to set the right focus.

What do you hope to achieve in the 6 months duration of your project?

In the next months, we will perform two pilot screens with different small molecule libraries. Thereby, we will hopefully identify helpful tool compounds. Further, this helps us to optimize and validate our assay before utilizing larger small-molecule libraries in the future.

What are your next steps from now?

The next step is to perform two pilot screens together with the ARUK Drug Discovery Institute at UCL. Once we identify promising molecules with the screen, we will closely characterize them to determine which one of them is the most promising candidate for a novel ALS/FTD therapy.

About Benedikt Hölbling

Benedikt Hölbling works in Professor Adrian Isaac’s lab at the UK Dementia Research Institute at UCL.

He examines mechanisms of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) on the basis of stem cell models.

Early Career Innovators: Therapeutic Vulnerabilities of an Oncoprotein in Tumour Initiation, Small Molecules TIN

Alina Shrourou11 December 2020

In the next Small Molecules TIN interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by early career researchers within the UCL Therapeutic Innovation Networks (TINs), Dr Victor Llombart highlights his Small Molecules TIN Pilot Data Fund awarded project, “Identifying therapeutic vulnerabilities of MYC through next generation structure-function”.

What is the title of your project and what does it involve?

My project is titled “Identifying therapeutic vulnerabilities of MYC through next generation structure-function”. MYC is an important oncoprotein involved in tumour initiation and development that is difficult to target using conventional small molecule-based approaches. The main reason is that MYC conforms a structurally highly disordered protein from which is virtually impossible to obtain a crystal model unless it is forming a complex with other proteins that stabilize it. Consequently, the design of drugs based on structure models of MYC is extremely challenging. Alternatively, we have designed and generated a library of MYC mutants to identify new protein domains that are potentially “druggable”. This pooled library can be screened using our MYC-dependent cell line allowing the identification by next generation sequencing of those aminoacid residues that are crucial for MYC oncogenicity.

What is the motivation behind your project/therapeutic?

Cancer is a major public health and economic issue worldwide. In the UK, ≈1,000 new cases of cancer are diagnosed every single day and most of the current anti-cancer therapies present high toxicity, drug resistance and significant side effects.

The protein MYC is an essential global transcription factor that regulates important functions in our body such as cell growth, cell metabolism or blood vessel development. MYC is also one of the most frequently altered genes in cancer and its expression is deregulated in about 70% of all malignancies. Several studies in animal models have shown how MYC inhibition leads to a rapid tumour regression while the healthy tissue remains unaffected. This opens the way for new therapies and makes MYC one of the most appealing targets for cancer treatment. However, as I mentioned before, the design of small molecules that target MYC is challenging. Our approach overcomes these limitations allowing an unbiased functional analysis at single amino acid resolution that I believe will provide essential structure-function information. Our data will also allow the identification of critical MYC interactors that can be explored for the indirect inhibition of MYC and form the foundations of a small molecule drug screening platform.

Why did you want to apply to the Small Molecules TIN Pilot Data Fund?

As an early-stage researcher, The Small Molecules TIN Pilot Data Fund was my first opportunity to apply for a grant as the main applicant. I thought that, if successful, it would be an excellent opportunity to manage my own research funds.

Also, I felt that the preliminary results of our MYC mutants library screening were extremely promising but made us realize that an increased sequencing depth was required in order to reach single aminoacid resolution. I was convinced that our proof-of-principle experiments were suitable for applying to the Small Molecules TIN Pilot Data Fund and that the scheme would be perfect to fund the additional sequencing analyses that are needed.

How did you find the process for the TIN Pilot Data Fund? What did you learn?

The application process was very quick. After submitting my application with all the relevant details of the project, my proposal was shortlisted for a pitch with a panel of experts following a Dragons’ Den style event. This was the first opportunity I had to defend my project in such format and it was extremely challenging, mainly for the short time we were given to present our data. Before the pitch, I learned how to present complex scientific data succinctly to specialists from industry and academia with very different backgrounds. As part of the ACCELERATE program I attended a training session that helped me to deliver an impactful and convincing message. In this workshop, I also received useful advice about how to navigate through the long Q&A and how to improve my body language – which is important also in an on-line session over COVID times! My lab mates helped me too by improving my presentation and by anticipating the most probable questions – they are absolutely amazing! During the whole process, I received important feedback from different perspectives that will definitely improve the project. Overall, I consider it a very positive experience that helped me to strengthen future grant proposals.

What do you hope to achieve in the 6 months duration of your project?

My plan at the end of this period is to reach an appropriate sequencing depth after the screening of our library in an adequate number of biological replicates generating a complete functional map of MYC. This will allow a robust statistical comparison and will decrease the number of false positives, ultimately reducing the costs derived from subsequent validation steps that we will carry out.

What are your next steps from now?

I will start by generating large-scale cultures of the MYC-dependent T-ALL cell line used as a model in this screening. These cells will be transfected with our MYC mutant library ensuring a proper representation of all the variants during the process and they will finally be incubated with tetracycline. During this incubation, those variants that translate to a non-functional MYC protein will drop out and will be identified by NGS and validated individually. These results will allow the identification of domains in the MYC protein that are critical for its oncogenicity. Following a mass spectrometry-based approach, we will try to identify novel MYC co-factors that are essential for its function and interact with MYC through these critical domains. We anticipate that this data will enable us to delineate in future proposals the structure of the protein-protein interaction interfaces that will ultimately inform in in silico drug design.

About Dr Victor LlombartVictor Llombart

Dr Victor Llombart is a molecular and cellular biologist that works as a Post Doctoral Research Associate in the lab led by Dr Marc Mansour, at the Haematology Department of the UCL Cancer Institute. Dr Llombart’s main research interest is learning how proteins that are involved in key biological processes function, interact and regulate essential tasks within the cell. During his PhD at Universitat Autonoma de Barcelona he developed different proteomic approaches for the discovery of novel diagnostic biomarkers for stroke using different in-vivo and in-vitro models as well as human samples.

Later, at St George’s University of London he worked on understanding the mechanisms that regulate the trafficking and exocytosis of intraluminal vesicles in endothelial cells.

Dr Llombart joined UCL in 2018 on a CRUK-funded project aiming to identify novel domains of the oncoprotein MYC that are important in protein-protein interactions and can potentially be targeted using small molecule drugs.

Early Career Innovators: Screening a DNA Encoded Library for Drugs Targeting Ocular Diseases, Small Molecules TIN

Alina Shrourou4 December 2020

In the first Small Molecules TIN interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by early career researchers within the UCL Therapeutic Innovation Networks (TINs), Clara Gathmann highlights her Small Molecules TIN Pilot Data Fund awarded project, “Screening a DNA encoded library on GEF-H1 for drugs targeting ocular diseases”.

What is the title of your project and what does it involve?

The title of my project is ‘’Screening a DNA encoded library on GEF-H1 for drugs targeting ocular diseases’’. GEF-H1 is a protein which our group has identified as a potential target for fibrotic and inflammatory ocular disorders. We have started to develop small molecules against GEF-H1, using computational and medicinal chemistry drug discovery techniques. However, our molecules are not very potent yet and we haven’t tried using high throughput screening.

DNA encoded libraries (DELs) contain billions of molecules in a single tube and can be screened on a protein within days. This technology is made possible by DNA tags attached to each molecule that encode their structures. As you may know, DNA can be amplified with PCR and sequenced. This enables a read-out of the structures of the most active molecules from picogram quantities in the tube. Hence, only one small tube is needed instead of thousands of 96-well plates. We decided to use the open source DEL library from WuXi and subject it to GEF-H1. With this, we hope to discover new molecules that bind GEF-H1 within a few weeks, giving a real kick to our drug discovery plans!

What is the motivation behind your project/therapeutic?

Preventable ocular disorders are still a major cause for vision loss. In addition to the high impact on human lives, sight loss is also a real economic issue for our societies. Even quite common ocular disorders like uveitis and retinopathies can cause vision loss if left untreated. Unfortunately, current treatments for inflammatory and fibrotic eye disorders either involve invasive surgeries or the heavy use of drugs like corticosteroids and anti-proliferative agents. These interventions are first of all not necessarily successful and have several side effects, including even vision loss!

As for many diseases, it all starts with a good drug target (in other words, a protein to inhibit). By finding potent GEF-H1 inhibitors, we hope first of all to produce useful clinical candidates that can prevent inflammatory and fibrotic damages done to the eye. But also importantly, we would show for the first time that GEF-H1 is a suitable protein to inhibit, paving the path for a new class of biological targets and providing a proof of concept for future drug discovery projects. I think this is truly motivating, to not only contribute to a cause such as a particular disorder, but also to a whole scientific field which might help completely unrelated disease classes.

Why did you want to apply to the Small Molecules TIN Pilot Data Fund?

DNA encoded libraries are an emerging technology that have gained a lot of attention lately. More and more data is published on the construction of such libraries, with some successful examples taken to clinical trials. However, the biggest libraries are often in-house libraries of pharmaceutical companies or offered by specialised companies to pharma giants. This means that drug discovery groups in academia don’t have easy access to these libraries for cost reasons, unless a collaboration is put in place. When we heard that WuXi launched this open source DNA encoded library for academia, it sounded like a huge opportunity to bring that technology into UCL and our department.

This technology can lead very quickly to positive results but would simply not have been possible to follow up on hits without the funds from the Small molecules TIN. The TIN pilot data fund seemed to be adapted due to the short-term character of the project and we hoped that such an unusual idea could awaken interest. In addition to this, applying for this kind of fund seemed like the perfect opportunity for me to learn about grant writing and how to fund research in general.

Learn more about the Therapeutic Innovation Networks and join a TIN

How did you find the process for the TIN Pilot Data Fund? What did you learn?

Overall, super exciting. While making the written application, I realised how important it is to connect our (sometimes crazy) scientific ideas to real life goals. For the first time in my life, I had to define the purpose for what I am doing in such details. In some disciplines like the ones involving clinical research, it might be easier to relate to the patients, but when you are in a lab synthesising molecules, sometimes you just loose that connection. Applying for the fund made me realise that the translational aspect of research even at its early point is really important.

Then, there was the pitching, which felt a bit like preparing for a TV show! We candidates had the chance to participate to an ACCELERATE workshop on pitching, probably the most important part of the application process. My pitch before and after that session was transformed thanks to the honest comments I received. I learnt to shift completely the initial ‘science nerdy’ focus of the talk to ‘why you should fund my project’. In summary, I learnt to tell why my project is going to make a change, and how I am going to achieve my goals in time.

What do you hope to achieve in the 6 months duration of your project?

The goal for this project is mainly to generate molecules that can be useful biological tools or clinical candidates which target GEF-H1 in ocular diseases. We want to generate accurate binding data on the hit molecules to prepare them for in vivo testing. If the screen generates potent molecules that bind GEF-H1 tightly, this will enable us to irrevocably confirm that GEF-H1 inhibition is beneficial for those diseases, fast-tracking us to clinical testing.

What are your next steps from now?

In those six months, I will first prepare materials for the screen (immobilise the proteins on beads for example), to then subject the protein to the DEL screen. After the screen is done, WuXi will process our samples, amplify the DNA tags and perform a statistical analysis on these to reveal the structures of the binders. We will then order the most potent binders for resynthesis on a milligram scale and validate them using biological assays. We typically perform biophysical assays like surface plasmon resonance (SPR) and cellular assays that model for example inflammation.

About Clara Gathmann

Clara Gathmann

Clara Gathmann works between the UCL Institute of Ophthalmology and the Wolfson Institute for Biomedical Research. She is working in the groups of Prof. Balda/Matter and Dr.Chan/Prof. Selwood, focussing on the discovery of small molecules as drug candidates for common ocular diseases. She started on a Moorfields Eye Charity funded project in October 2019 involving the design, synthesis and biological assessment of molecules inhibit the GEF-H1/RhoA interaction.

Early Career Innovators: Blocking LRG1 in Pancreatic Cancer, Biologics TIN

Alina Shrourou23 October 2020

In the next interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by early career researchers within the UCL Therapeutic Innovation Networks, Dr Athina Dritsoula and Dr Carlotta Camilli highlight their joint Biologics TIN Pilot Data Fund awarded project focusing on the effect of LRG1 blockade in pancreatic cancer.

How did this joint project come about?

CC: Athina and I both arrived at the Institute of Ophthalmology to do our post-docs where, weirdly enough, we don’t do eye-related research but explore vessel behaviour using ex-vivo models of angiogenesis and in vivo models of solid tumours.

What is the title of your project and what does it involve?

AD: The interest of our lab is focused on the LRG1 protein, which is involved in pathological angiogenesis, but we don’t know much about its normal function. Based on our research, we believe that blocking the function of the LRG1 protein by using a specific monoclonal antibody that we have developed in the lab will be beneficial in conditions with abnormal angiogenesis like cancer. In fact, LRG1 is upregulated in pancreatic cancer, which is a type of cancer with minimal survival that remains untreated. So, Carlotta and I designed this project to study the effect of LRG1 blockade in pancreatic cancer.

What is the motivation behind your project/therapeutic?

CC: Pancreatic cancer is a leading cause of deaths from cancer that kills about half a million people worldwide each year. The current standard of care involves combination cytotoxic chemotherapy, which often fails due to the complex tumour microenvironment. So, there is a great need for developing novel therapeutic strategies that will target new molecules and pathways, and we believe that our anti-LRG1 antibody could be a great novel therapeutic candidate.

Why did you want to apply to the Biologics TIN Pilot Data Fund?

AD: We both thought that the Biologics TIN Programme is a great opportunity to get enough funding to support a short 6-month project that would allow us to a) test our hypothesis and b) generate pilot data to design a bigger project in future if (a) proves right.

Join the Biologics TIN

What do you hope to achieve in the 6 months duration of your project?

CC: Well, we hope that we will manage to prove that our hypothesis is correct, and COVID-19 situation allowing, generate data to apply for more funding and get this project further. Our -very ambitious – aim is to get our antibody into clinical trials for pancreatic cancer in a few years’ time!

What are your next steps from now?

AD: Hope that our orders will be delivered on time and that our experiments will work as planned! We need to complete the project before a second lock down crushes.

Do you have any top-tips for applicants currently going through the application process for the other TIN Pilot Data Funds?

AD: The 10 minutes Dragons’ Den round felt much longer than it was! Be well prepared for all types of questions, and maybe have a mock interview with your PI, if possible.

CC: Spend enough time to prepare the slide presentation. It might seem easy but it’s not, as it needs to be very concise and straight forward!

About Dr Athina DritsoulaDr Athina Dritsoula

Dr Dritsoula studied an undergraduate degree in Molecular Biology and Genetics in Greece over a decade ago before arriving in the UK for a Master’s and PhD, and UCL has been home to Dr Dritsoula since. Although human genetics was Dr Dritsoula’s first love, Dr Dritsoula quickly found her “forte” in vascular biology – studying the biology of big human vessels during a PhD, and then smaller vessels stability and angiogenesis during post-doc.

About Dr Carlotta CamilliDr Carlotta Camilli

After completing a Master’s in Medical Biotechnology, Dr Camilli left Italy to start a PhD at UCL focusing on the use of vascular progenitors for the development of a bioengineered muscle.

However, Dr Camilli’s broad interest in translational medicine pushed her to explore a different pathological context during post-doc, namely the tumour angiogenesis. Dr Camilli found jumping on this new field a difficult but exciting challenge!

Early Career Innovators: Treating Antimicrobrial Resistant Pathogens with Monoclonal Antibodies, Biologics TIN

Alina Shrourou15 October 2020

In the third interview as part of the Early Career Innovators series, acknowledging the amazing translational work being done by early career researchers within the UCL Therapeutic Innovation Networks, Dr Gathoni Kamuyu highlights her Biologics TIN Pilot Data Fund awarded project “Identifying monoclonal antibodies for the treatment of Acinetobacter baumannii infections” and presents some advice for future applicants.

Please provide an overview of your Biologics TIN Pilot Data Fund awarded project. 

My project, “Identifying monoclonal antibodies for the treatment of Acinetobacter baumannii infections” will use single B-cell sequencing and cloning techniques to identify monoclonal antibodies targeting A. baumannii [3]. This will involve immunising mice to generate a robust antibody response against selected proteins, obtaining antigen-specific single B cells by fluorescence-activated cell sorting and screening each individual B cell for the production of antibodies effective in controlling the bacterial infection. Once a positive antibody-secreting B cell is identified, the corresponding monoclonal antibody it secretes, can be made in large quantities by recombinant protein expression [4, 5].

What is the motivation behind your project/therapeutic?

Acinetobacter baumannii has been referred to as the perfect predator in the media [6] and is number one on a recent WHO list of antimicrobial resistant (AMR) pathogens to which alternative therapies are urgently required [7, 8].

Through many different mechanisms, A. baumannii can survive and spread rapidly within hospitals, causes approximately 6-24% of nosocomial bacteraemia and pneumonia (particularly within intensive care units) and is associated with high morbidity and mortality rates [8-10]. Current treatment options uses complex antibiotic combinations to overcome the AMR profile, and there is an increase in reports on the incidence of infections caused by pan-drug resistant A. baumannii (non‐susceptibility to all agents in all antimicrobial categories) [11].

Monoclonal antibodies (MAbs) are a viable alternative to antibiotics that avoids the problem of drug resistance [12].  A carefully selected MAb offers multiple advantages over antibiotics that include rapid development with low toxicity, have minimal effect on the human microbiome, do not drive resistance to antimicrobials and can be conjugated to additional molecules to enhance antimicrobial effects.

Why did you want to apply to the Biologics TIN Pilot Data Fund?

The biologics TIN pilot data fund was specifically interested in funding projects by early career researchers (ECR), on biologics (including monoclonal antibodies), that were between the discovery and translational phases. This would allow the ECR to generate pilot data that could be used to apply for larger grants. My current research work had identified potential protein targets that elicited protective antibody responses against Acinetobacter baumannii making them ideal targets for monoclonal antibody development.

In addition, it was an opportunity to identify, interact and establish collaborations through the TINs, with groups within UCL that have similar research questions or have specialised research techniques.

What do you hope to achieve in the 6 months duration of your project?

I hope to have identified a subset of monoclonal antibodies targeting A. baumannii for further validation. I would also like to establish the pipeline I would use to identify monoclonal antibodies against additional antigens of interest that we would identify.

What are your next steps from now?

Hit the lab and generate data…

Do you have any top-tips for applicants currently going through the application process for the other TIN Pilot Data Funds?

Read the application instructions carefully, keep within the word count on your application and keep your 2 min pitch, simple, straightforward and to the point.

Learn more about and join the TINs

About Dr Gathoni Kamuyu

Dr Gathoni Kamuyu obtained a BSc. in Biochemistry (1st Class Honours, University of Nairobi, Kenya) and MSc. in Molecular Biology of Infectious Diseases (Distinction, LSHTM,United Kingdom). Dr Kamuyu’s research career started at the KEMRI-Wellcome Trust Research Programme (Kilifi, Kenya), evaluating the link between exposure to parasitic central nervous system infections and epilepsy [1].

In 2017, Dr Kamuyu obtained a PhD from the Open University/KEMRI-Wellcome Trust programme, which focused on identifying the targets of protective antibodies against Plasmodium falciparum, one of the causative agents for Malaria [2]. During her initial post-doctoral training at University Hospital Heidelberg, Germany, Dr Kamuyu used in vivo models to evaluate a panel of P. falciparum proteins as targets of protective antibodies.

Currently, Dr Kamuyu is a Research Fellow within Prof. Jeremy Brown’s group in the Department of Respiratory Medicine, Centre for Inflammation and Tissue Repair (CITR), UCL. Her research focus includes understanding acquired immunity to Acinetobacter baumannii (A. baumannii), identifying the potential targets of protective antibodies and the mechanisms employed by A. baumannii to evade the effector functions mediated by the complement system.

References

1. Kamuyu, G., et al., Exposure to multiple parasites is associated with the prevalence of active convulsive epilepsy in sub-Saharan Africa. PLoS Negl Trop Dis, 2014. 8(5): p. e2908.
2. Kamuyu, G., et al., KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol, 2018. 9: p. 2866.
3. Lu, R.M., et al., Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci, 2020. 27(1): p. 1.
4. Carbonetti, S., et al., A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning. J Immunol Methods, 2017. 448: p. 66-73.
5. von Boehmer, L., et al., Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc, 2016. 11(10): p. 1908-1923.
6. Patterson, S.S.a.T., The Perfect Predator: A Scientists’s Race to Save Her Husband from a Deadly Superbug: A Memoir.
7. (WHO), W.H.O., Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotic. 2017.
8. Tacconelli, E., et al., Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis, 2018. 18(3): p. 318-327.
9. Allegranzi, B., et al., Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet, 2011. 377(9761): p. 228-41.
10. Cerceo, E., et al., Multidrug-Resistant Gram-Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options. Microb Drug Resist, 2016. 22(5): p. 412-31.
11. Magiorakos, A.P., et al., Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 2012. 18(3): p. 268-81.
12. McConnell, M.J., Where are we with monoclonal antibodies for multidrug-resistant infections? Drug Discov Today, 2019. 24(5): p. 1132-1138.