X Close

Medical Physics and Biomedical Engineering Teaching

Home

Highlights of the teaching going on in UCL Medical Physics and Biomedical Engineering

Menu

Peer assessment in group work

By rmapapg, on 13 May 2016

By Pilar Garcia Souto

UCL Engineering trains students to use engineering knowledge within extended group practical activities to better prepare them for their careers after graduation. However, despite the substantial educational benefits of getting students to work in teams, students express and experience concerns that significantly decrease the student satisfaction.

We decided to look deeper into this matter and organized student focus groups across the Engineering Faculty, and spoke with various members of staff that use and assess group work. The message is clear: an element of “individual contribution” is needed, possible set by peers and tutor moderated, which improves the group dynamics and penalize the “passengers”. Otherwise students frequently express dissatisfaction if all members of a team are given the same mark regardless of the individual effort.

The concept is simple. At the end of a group work students rate the contribution of each team member, and this is used by the tutor to generate an individual mark. This encourages self-reflection, increase student satisfaction and reduce student’s complaints. The only major drawback is that the peer assessment of individual contribution is mainly collected using pen and paper, hence very staff consuming, as current e-learning tools are inadequate. From our research, this tool should be online, anonymous, preferable within Moodle and flexible so staff can adapt it and ask or value different aspects (e.g. reliability, punctuality, contribution to ideas, etc.).

This is an ongoing project. We presented some results at the UCL Teaching and Learning conference in April 2016, which attracted a lot of interest. It is clear that individual contribution assessment is something that staff from across UCL want to implement, and yet we lack the appropriate system. We decided to take the lead on establishing a consortium with those interested, and seek for some funding to develop an appropriate system within Moodle that would allow us to efficiently incorporate this practice into our teaching. If you are interested on participating and/or hearing more of our results, please contact p.garciasouto@ucl.ac.uk.

Our thanks to ELDG 2015 who partially funded this project.

Pitching UCL Biomedical Engineering Inventions To A Panel Of Dragons

By rmapapg, on 11 April 2016

By Jenny Griffiths

We made an unusual homework demand on our second year Biomedical Engineers over the Christmas vacation: they had to watch TV.

The students were asked to use UCL’s subscription to Box of Broadcasts to watch episodes of BBC’s Dragon’s Den in order to prepare for their first week back when they would be asked to spend a few days applying knowledge and understanding of enterprise, ethics, and regulations to medical devices.

On the first day of term, groups of students were each given a UCL Biomedical Engineering invention and told that they were to present a written portfolio and give a pitch to a panel of expert ‘Dragons’ on Friday afternoon.  They then went off, made contact with the UCL inventors of the devices, and with the help of a Teaching Assistant with a background in Medical Device Innovation, researched:

  • the devices’ capabilities
  • the market for the invention
  • routes to that market
  • ethical implications and requirements
  • medical device regulations for the device

All this information – key to bringing an engineering concept from lab to public use –  needed to be at their fingertips for the Friday presentations.

The full assignment marks for the work were split between the presentation, a written group portfolio and individual contributions to the team. We also upped the competitive element by awarding a prize for the best pitch, judged entirely subjectively by the Dragons and unlinked to any summative assessment marks.

dragons den presentation

This year’s devices were an optical ultrasound transcatheter imaging system (Dr Adrien Desjardins), a percutaneous heart valve delivery system (Dr Gaetano Burriesci) and SenseWheel – a force sensing wheelchair wheel to measure biomechanics (Dr Catherine Holloway).

On Friday afternoon, each group had five minutes to present their device to a panel of experts consisting of:

  • an academic medical devices expert
  • a Royal Academy of Engineering Enterprise Fellow
  • an academic who has commercialised a medical device through a spin-out
  • an external marketing and communications expert with no expert medical device knowledge.

The presentations were held in the appropriately intimidating Executive Education Suite, where the panel sat in high backed chairs and asked probing questions after each presentation. The students responded professionally and gave excellent pitches, selling devices that they had not know about just five days before!

Our highly sought after prize of copies of Eric Ries’ ‘The Lean Start up’ and (chocolate) money was won by team SenseWheel.

dragons den prize

In future years we aim to encourage more external Dragons to take part and will link the prize giving to an industrial careers and networking event for the students. If you are an employer who would like to be a part of this fun and valuable event, the department would love to hear from you.

Living Aid – working with Remap

By rmapapg, on 15 March 2016

By Rebecca Yerworth

remap1During the last week of February the second year biomedical engineers were introduced to ‘Remap’, a national charity working through local groups of skilled volunteers to help disabled people achieve independence and a better quality of life, by designing and tailor making equipment for their individual needs. The week started with a fascinating talk by Remap volunteers, explaining the purpose of the charity, the range of projects they tackle and the life changing effect of these bespoke items.

The students were then tasked with designing an aid that will enable a client to fit and remove spectacles, which she is unable to do without help, due to restricted arm movement. Whilst Remap projects vary in complexity, this is typical of the issues they solve – giving back independence to disabled users, or enabling them to take up a hobby they could previously only dream of.remap2

By the end of the week the students had had two meetings with the ‘client’ (an actor well acquainted with the issues) and we had three prototype devices. Three completely different approaches were taken, all of which the students could operate… though some needed further refinement/customisation to be useable by the client.

remap3The project raised some interesting questions about the relative merits of 3D printing versus traditional DIY techniques and of passive versus active devices. It also highlighted the importance of identifying and taking into account the client’s needs and preferences.

 

Assessment by wiki

By rmapapg, on 1 March 2016

By Adam Gibson and Rebecca Yerworth

We’re keen to incorporate different methods of assessment into the biomedical engineering programme. This makes the process more interesting and engaging for staff and students, and allows us to teach and assess a wide range of transferrable skills. In a new module on anatomy and physiology for biomedical engineers, we teach the basic anatomy and physiology in workshops and in a dissection room, and provide enhanced context by asking biomedical engineers to give two-hour “case studies” where they describe how their research interacts with the relevant anatomy and physiology.

We’ve built on this concept of a “case study” in the assessment where we ask students, in pairs, to research and present their own case study. The twist is that we have asked them to prepare and produce this using an online wiki interface. This allows us to move away from the standard boring Word document and introduce new skills. We ask students to demonstrate advanced writing skills by writing for a lay audience. They also need to consider how writing a website is different from a typical document, and address topics such as accessibility, web design and ensuring that any images have appropriate copyright. Academic referencing is as important as ever but has a different nuance if hyperlinks can be used. We produced a rubric which shows how we emphasised these areas in the assessment.

Asking students to research their own case studies based on those presented by experts in the field fits in nicely with UCL’s emphasis on research-based education and the connected curriculum, particularly as an example of outward-facing assessment.

A wiki interface includes a “history” log which makes it easier for an assessor to track the contributions of each partner, and also allows permissions to be controlled so that only members of a pair or team have access to edit the document, but tutors can view progress. Once the assignment is complete and assessed, we opened up access completely. This encourages students to take pride in their work, and gives them something they can link to if they choose. We hope that our collection of case studies will lead to a useful resource as different cohorts of students add to it year by year. We will also encourage students in subsequent years to read previous submissions and hopefully learn from them.

The case studies wiki is now available for all to see.

Smartphone app for detecting pulse rate

By rmaptst, on 17 February 2016

By Terence Leung

Our 1st year Biomedical Engineering students had very little computer programming experience when they began their first scenario week on Monday, 8th February. So to them, developing a smartphone app that can measure pulse rate seemed almost like an impossible task. However, as they struggled through the week, they learned about building the graphical user interface, switching the phone’s flash on and off, accessing pixel values from the phone’s camera, and performing Fast Fourier Transform to get the frequency of a periodic signal. Gradually, their apps were taking shape. Indeed by Friday all 10 teams had successfully developed their apps, some completed with a customised logo, animation, and even sound effect. It was a tough week, typically 9 to 5 (except Wednesday afternoon off). Many students found it tiring but were very proud of their first ever healthcare apps. Hopefully not their last!

Anxiously waiting for the test result…

Anxiously waiting for the test result…

 

Test result looks good!

Test result looks good!

 

Students took turn to demonstrate their apps

Students took turn to demonstrate their apps

 

This app apparently has the approval of fellow students

This app apparently has the approval of fellow students

 

Explaining why this is a great app!

Explaining why this is a great healthcare app!

 

This app has incorporated an animation in the background!

This app has incorporated an animation in the background!

 

This app has a customised logo (top left corner)!

This app has a customised logo (top left corner)!

 

This app plays simulated heart sounds during the measurement!

This app plays simulated heart sounds during the measurement!

Regaining Control

By rmapapg, on 18 January 2016

By Rebecca Yerworth

Just before Christmas, DSCN2511 the second year Biomedical Engineering students spent a week in the lab designing and building a device to replace a computer mouse for a hypothetical client who had no hand. The devices picked up electrical activity in the muscle of the arm and translated these into cursor movements and clicks – or at least that was the theory.

Regaining controlThe students’ knowledge of electronics, anatomy and problem solving were all put to the test as they built and tested their circuits. They discovered the delights of bread-boarding moderately complex circuits – and the importance of keeping your ‘spaghetti’ colour coded! Of equal importance was realising that some muscle groups are easier to control independently that others – and that what most of us do routinely, without consciously thinking about it, takes a lot more physical and mental effort when being relearnt.

All the groups successfully detected and recorded electrical activity from muscles. Detecting muscle activity from multiple muscle groups with a sufficiently clear signal to control a mouse pointer is much more challenging, but everyone managed this, at least intermittently. In amongst the hard work, it was good to see the moments of fun and hear the cries of delight as the first hand-free mouse clicks appeared.

Pebble in the Pond

By rmapapg, on 2 December 2015

By Alan Cottenden

Congratulations to the victorious Biomedical Engineering team who managed to transport their pebble the length of the assault course they had designed and built – involving a catapult, a lift, numerous slides and prodigious quantities of string and sticky tape – and deposit it in a bucket at the finishing line with fewer “interventions” (that is, manual interferences to help it on its way!) per meter of travel than either of their two rival teams. The pictures show the creators of the assault course’s four sections admiring their handiwork while savouring the taste of victory!

pebble_in_the_pond_winning_team_1

Team Catapult

pebble_in_the_pond_winning_team_2

Team Vertical

pebble_in_the_pond_winning_team_3

Team Cup

pebble_in_the_pond_winning_team_4

Team Balloon

Clinical engineering visit to Royal National Orthopaedic Hospital

By rmapapg, on 13 November 2015

By Nishat Ahmed and Bindia Venugopal

On Wednesday the 11th of November, we were up at the crack of dawn, pumped and ready to go to the Royal National Orthopaedic Hospital in Stanmore. After missing trains due to tube closures and our taxi rides arriving a half hour late, we finally managed to reach the hospital in time to attend the Multi-Disciplinary Team meeting.

We found the meeting very interesting, watching the consultant surgeons and nurses discuss real case studies of patients. They collaborated well to work out the best way to rehabilitate patients, whether this was through further surgery or simply giving them advice and support.

Later on we headed to the operation theatres, adhering to hospital dress code we threw on our scrubs, hair nets and masks beforehand! Since we were only allowed three students at a time in the theatres, we split into groups and then went off to watch various operations taking place. The first surgery we watched involved attaching a metal plate to a fractured tibia bone to aid its healing process in a way that was ingenious! It was fascinating watching the surgeon screw the bone together and then brace the join with a metal plate. The screws held the fracture under compression, this meant it was forced to combine together rather than slide apart, and the metal plate stopped it from twisting.

The second surgery we went to was an extremely rare case where the surgeons ended up dislocating the hip bone in order to remove a benign tumour from inside the bone. They sawed the hip bone in half as bone-to-bone healing worked best compared to tendon-to-bone healing. The challenge was in trying to avoid damaging the femoral head to get to the tumour.

After this we had a little tea break and then made way to our next surgery! This was a spinal surgery where the patient had a twisted spine due to being paralysed for 10 years. They operated with a diathermy machine which uses electricity to cut through the skin and muscles as this reduces blood loss. Although we only saw the surgery for 10 minutes we learnt how vital it was to keep the fluids in the patient regulated. This job was monitored by the anaesthetist, who informed us about the patient and the precautions which needed to be taken. Two neurophysiologists were monitoring electrical activity in the spinal cord to ensure that it wasn’t damaged by the surgery.

Scrubbed up

After an insane experience watching all the surgeries, we went to have lunch which was provided by the lovely team at Stanmore. In the afternoon we got a tour around the BME department at the hospital and learnt about all the weird and wonderful things they collect and experiments they run! In fact, we found out that they have over 6000 failed hip replacements from 25 different countries in their labs to study and analyse. They conduct experiments to research why implant failure happens in some patients the way it does, especially those with metal on metal implants. They use tools for metrology which measures the exact size of the ball and socket implants with crazy precision! This information is then used to work out the amount of corrosion that happened in the body when the implants were inserted.

Overall, we had an amazing and truly valuable experience. The entire team were extremely friendly and helpful! We loved that we could ask questions and interact with the staff so well. It was remarkable to see the transition from a real-life patient problem to actually seeing the solution executed in the surgeries. It was also encouraging to see how the hospital carries out their own research which can then be implemented to the surgery procedures in only a few years’ time.

On behalf of our whole BME department, we thank you for this experience Professor Hart and RNOH!

“Oh God this is so cool! Do we really have to stick to our budget?!”

By rmapapg, on 9 November 2015

By Jenny Griffiths

Scenarios are a highlight of our new biomedical engineering programme. In a scenario, all lectures stop and students spend the whole week working on a group project where they solve a biomedical engineering problem. Last week, our second year students worked with Jenny Griffiths to build articles of smart clothing. Their brief was to design and build an item of clothing to monitor a marathon runner’s wellbeing and give an alert to inform the runner and all those around them to prevent injury. Students were encouraged to be creative and develop their own solutions as long as their device met the design brief and was safe.DSC00656

Jenny provided the students with a range of components, mainly centered around the Adafruit Flora wearable arduino. We gave them sensors including temperature and pressure sensors, accelerometers, GPS, UV and light sensors and stretchy conductive rubber. Outputs included buzzers, vibration motors, Bluetooth connectivity and programmable RGB LEDs, but they were only allowed to use up to £40 for materials. The task built upon electronics modules which students took last year, and a clinical engineering module which includes lectures on transducers which the students are taking at the moment.

We put the students into random groups and let them loose!

shoesTwo groups chose to design their own sensors from scratch to monitor electrolyte concentration in sweat. They quickly learnt how challenging it is to build a robust sensor! They sewed their home-made sensors into running shirts with conductive thread and used the arduino to control LEDs based on the resisitivity of the sensor. Another group built an arm band to monitor skin temperature. They learnt that packing 10 LEDs, a microcontroller, batteries and an temperature sensor into a package the size of a iphone can lead to wiring complexities. The winning group instrumented a running shoe with pressure-sensitive pads to measure gait continuously during the running cycle. They sewed their Flora onto the shoe and daisy-chained LEDs around the shoe with conductive thread. They went shopping to find low-cost trainers which fitted a team member and also gave them something additional to write about in their sustainability analysis.

 

Range of smart clothing

Students enjoyed the scenario, some saying this was the first time they’d ever worked as a team under pressure. They were ambitious and undaunted by such an open-ended task. Despite one team doing a complete redesign at the beginning of Day 4 out of 5, project management and budgeting were good even when students were tempted to go over budget (see  title of post!). All worked hard and Jenny had fun leading it, with great support from Eve, the lab technician. All enjoyed the occasional punctuations from smoking components and whoops of success. There’s now competing demand for the clothing, with students wanting to take them home to show family and friends and us wanting to hang onto them to entice prospective students in UCAS visits to join us next year.