X Close

UCL Energy Institute Blog

Home

Blogs by staff & students of the UCL Energy Institute

Menu

Climate Change and Resources

By ucqbaza, on 6 March 2014

Blog by Alex Zardis, Student at the Bartlett School of Graudate Studies

Climate Week means different things for different people, it may mean the promotion and campaigning of a sustainable and low-impact lifestyle to influence the next generation, for myself, I see it as a chance to reflect on our individual behaviour and to look at our personal resource use and attitude. Many different parties are rallying and legislating towards the use of renewable energies and the sustainable use and recycling of materials/products. This is absolutely essential for our societal evolution and these efforts are the first steps forward in an enormous path towards sustainable living, but these steps alone without a major catalyst will not see the major structural change that is needed, not least in our lifetimes. My previous thermodynamics lecturer in Cardiff believed that we will still be using coal and oil as a main source of fuel at the end of our lifetimes, if this would be true it brings a realisation our society has built its infrastructure so dependent on these fuels and related technologies. Individually, to increase the efficiency of our resource use we have a very strong alternative to make a significant impact. We can contribute on a personal scale and little by little, a lot is changed.

Cautious resource use does not strictly have to relate to combating climate change and is generally good practice. As a generation whose elders were taught to use resources carefully and wisely under strict military rationing, these practices have sometimes passed down and arrived to ourselves, under the wise words of our grandmothers ‘never to waste a penny’, or rather dubiously perhaps never to waste a really old, out of date can of baked beans or whatever may reside far too long in their cupboards! However we are all guilty of falling short to expectations of sustainable resource use. Despite good intentions and a positive attitude to resource use, sometimes we fall guilty to convenience and to laziness. Maybe it’s just too far to keep take that can or plastic bottle to find the next recycling bin rather than the close waste bin, maybe the appeal of a brand new iphone or computer rather than replacing a screen or battery is appealing. Possibly a now un-used but perfectly fine item lays dormant while the chance for it to be passed on, sold or re-used is wasted.  We can use this opportunity of climate week as a chance to make more of an effort in our lives to re-use items and utilise the entire life-cycle potential of our products.

Local councils and the government already provide the services for us to recycle a great range of products, however we should be increasing our use of these facilities. An entertaining and ‘easy to digest’ set of promotional video shorts have been created by the government to explain the actual process that our products go through whilst they are recycled, these are available to view at this website and highly advised to watch! www.recyclenow.com/how_is_it_recycled

These facilities can help discourage the dumping of waste via landfill and to reduce electrical waste and its illegal exportation. Most electrical products are covered under an EU legislation called the WEEE waste electrical and electronic equipment legislation, if you look on any electricity using product within your vicinity, it is likely that it will be covered by this legislation and have a crossed out wheelie waste bin WEEE logo displayed. This legislation and logo display means that the companies involved in its retail and distribution are obliged by law to cover the costs for the product’s safe return and recycling. Whilst this option is provided it is not particularly well known or advertised, hence it is now our turn to be more pro-active about the use of these services.

From another perspective our resources can have their lives extended by re-use rather than re-cycling. Only recently a great local example has been demonstrated and pursued. Reclaimed material leftover from the 2012 Olympic Games was sourced to create a community skatepark in Hackney Wick, East London. This story was supported by Google and told as a commercial. The story video can be seen here: http://www.youtube.com/watch?v=GvgqDSnpRQM. Since its inception it has seen its lease extended by a year, offering local skateboarding, bmx and rollerblading enthusiasts another season of riding.

Concerning the overall perspective of resource use within our society, we are in an age where we are viewing sustainability and the resourceful use of our belongings with increasing positivity. Although despite this It is saddening that behind the individual perspective that this blog entry covers, major entities, companies, corporations and governments still consume far more than they need, and end up with left over waste that is disregarded. UCL does have incentives and is aware of their responsibility to be a sustainable business. However, as could be the case in this day and age, sustainability may be a buzz word within an organisation’s brief, so let’s take a look at a small selection of the realised actions and that are being taken by UCL in conjunction with Green UCL:

These concern campus wide initiatives, though within UCL individual departments are encouraged to develop their own sustainability strategies. An example of this can be the archaeology department which has listed their incentives and objectives: www.ucl.ac.uk/archaeology/about/facilities/green. My department, the Bartlett School of Graduate Studies, has their own incentives too and we are an environmentally conscious department. There is however always room for improvement and a closer monitoring of the air conditioning of un-occupied rooms within the campus could be pursued, as well as the provision of more cycle parking.

I shall round up my talk concerning sustainability and resources, I hope that this blog has been entertaining and possibly educational! I understand that I have approached this from the perspective of a local London citizen and have not widened the scope of the report to focus on the global issue. I would like to think that in this case the small differences can be achieved individually and create a direct impact on our lives whilst contributing to the greater cause of sustainable resource use, which needs our combined support as a global movement. I hope that during this climate week of 2014, myself and the audience of UCL can make a positive change towards sustainable resource use.

Climate and Land-Use Change: Managing a safe land-ing?

By ucqbdnr, on 6 March 2014

Blog by Darshini Ravindranath, UCL ISR PhD student

A combination of increasing scarcity of some natural resources, climate change and growth in global population to 9 billion by 2050 are creating conditions for a ‘perfect storm’.

The economic, social and ecological costs of climate change on vulnerable communities will be colossal. The impacts are depressingly palpable; rising sea levels, storm surges, declining groundwater levels, wildly unpredictable rainfall patterns, have led to large-scale depletion of ecosystem services. Climate change is set to challenge our existing notions of the utilisation and value attached to land. Simultaneously, increasing demand for food, fodder, fibre, timber and other biomass-based raw materials, is putting further pressure on these changing landscapes, leading to unsustainable land-use patterns.

Waiting for water, in a drought prone village in Southern IndiaTravelling through India for fieldwork related to my projects has allowed me to test my knowledge firsthand. I have found landowners and workers, tied to income and livelihood from land and monsoon to be extremely vulnerable to current climate variability and future climate change. Household concerns in these areas can often be linked with unsustainable use of land, water and biomass resources. The three issues are inter-linked in a typical ‘village ecosystem’, and a failure in one aspect will lead to complex knock-on effects on the others. For example, wind and water led soil erosion elicits land degradation, low water availability and low and non-sustainable biomass (food) production. A common practice I came upon in areas of low water availability was a fixation with excessive digging of bore-wells to source water for irrigation, which was leading to further ground-water decline. Somini Sengupta, who wrote an article on India’s groundwater woes for the New York Times, best captures this phenomenon.  She writes, ‘with India’s population soaring past 1 billion and with a driving need to boost agricultural production Indians are tapping their groundwater faster than nature can replenish it, so fast that they are hitting deposits formed at the time of the dinosaurs’. Similar headlines have emerged in Africa, where issues of land access mean a groundwater crisis looms despite recent discoveries of vast aquifers.

There is an urgent need to shift away from such inefficient farm practices, supply chains and diet choices towards long-term sustainability, profitability and health. Unfortunately, very little is being done towards this, especially in developing countries, where such problems are magnified due to heavy reliance on climate-dependent sectors.

The solution to these challenges can be met, at least in part, by sustaining land (or soil) quality and water supply. Most studies to date (with a few notable exceptions) have focused on one challenge or another (e.g. GHG mitigation, water provision, food security), but have not considered the multifarious cumulative effects that arise from the use of land, water and biomass. To solve these complex problems, it is critical to understand how diverse social and ecological drivers affect land systems.

The role of the state is critical. Changing land-use patterns have created a confusing palette for local governments. The focus must be to understand how best to improve resilience of communities and incorporate it into local land-use planning strategies in a synergistic manner. Utopian as these ideas may seem, it is essential to help the local population as well as local governments to better understand the value and potential of their land, prevent unsustainable land-use and therefore aid in the sustenance of robust livelihood systems. Feeding a population of 9 billion by 2050 requires concrete and coordinated evidence-based action.

Picture caption: ‘Waiting for water, in a drought prone village in Southern India’; Photo by: Darshini Ravindranath

 

 

“Half the work, twice the effect” – from a Chinese proverb to the cost-effective responses to the climate crisis

By ucftaww, on 6 March 2014

Blog by Wenjia Cai, UCL Lancet Commission

Right now I am sitting in my office in Beijing, where the air quality has been labeled by “hazardous” for almost a week. I am suffering from my sore throat, but I have nowhere to escape.

I believe this is the kind of frustration faced by many people, when they know climate change is threatening their health. The negative health impacts are happening, and are very likely to cost us a fortune.

Some simple but serious facts [1]-[3] are shown below. Of the world’s total population,

Wei 1

These are the most vulnerable people in the world. They are never the biggest contributors to the climate change crisis, but they are the ones being affected the most. Their health has been greatly threatened by droughts, floods, hunger, vector-borne diseases, home damages and health services interrupts.

Take hurricanes and storms for example. Hurricane Sandy hit the northeast coast of the United States, causing widespread damage and around 100 people died. However, in the developing world, such storms take a much greater toll. In 2007 and 2008, two very severe storms – Sidr and Nargis – caused the deaths of more than 10,000 and around 138,000 people in Bangladesh and Myanmar, respectively. In fact, statistics shows that only 5% of tropical cyclones occur in the north Indian Ocean, but they account for 95% of such casualties worldwide[4].

To respond to the climate crisis, greenhouse gas mitigation certainly aims for the root of the problem; yet some simple and low-cost adaptation measures can have instant effects.

Peter J. Webster, a professor of Earth and Atmospheric Sciences at the Georgia Institute of Technology, USA, advocates for the establishment of network between the forecasters of global weather and climate in the developed world, and research, governmental and non-governmental organizations in the less-developed world[4]. He estimated that such a network could produce 10-15-day forecasts for south and east Asia for a wide range of hydrometeorological hazards (including slow-rise monsoon floods, droughts and tropical cyclones), which will cost as little as $2~3 million a year, but save billions of dollars and thousands of lives.

On the basis of a World Bank report[5], one analysis concluded that about $ 40 was saved for every dollar invested in the regional forecasting and warning system. 

Fortunately, as commented by Webster, Bangladesh already benefited from such network. In 2007 and 2008, Bangladesh experienced three major floods. Each was forecast successfully ten days in advance and mitigation steps were taken.

This is one successful story of how we can quickly adapt to the coming climate crisis in a cost-effective way. The following table is excerpted from the major-task list of the “National Strategy of Climate Change Adaption” in China[6], published in November 2013, which may also provide us some hints on the other cost-effective options.

 

Major tasks to protect human health under climate change context in China
Improve the health and epidemic prevention system construction –strengthen disease prevention and control system–amend the indoor and working environmental standards–monitor drinking water hygiene conditions
Carry out monitoring and evaluation, as well as public information services –evaluate climate change impacts on the health of vulnerable people–establish the health-related weather monitoring and early warning networks, and public information service system
Strengthen the emergency system construction –develop and improve the health emergency plans for heat stroke, snow and ice, haze and other extreme weather and climate events

 

We are standing in the historic moment of addressing the climate crisis. Any delayed action may result in irreversible change and unaffordable costs. To make the right strategy, the traditional cost-effective analysis (CBA) can shed some light and help us choose within the large pool of adaptation and mitigation options. Obviously our choices will lean towards those options which don’t need high investment and will eventually pay for itself. In fact, there are many such options which can have the “twice the effect” with “half the work”. Our report will try to identify them. It’s also expected that, after considering the monetized health benefits, those options will become much more cost-effective, which can strengthen the will and catalyze the actions from politicians and investors.

Wenjia Cai is an assistant professor of Global Change Economics in Center for Earth System Sciences, Tsinghua University, Beijing, China. E-mail: wcai@tsinghua.edu.cn. The blog content only shows the views from the author, and cannot represent the opinions of any organizations or working groups.

References:
[1] World Bank, 2013. World Development Indicators 2013. http://data.worldbank.org/region/WLD (accessed Feb 25th, 2014)
[2] Da Silva J, 2013.. World Food Day 2013: Towards Sustainable Food Systems. http://www.fao.org//about/who-we-are/director-gen/faodg-opinionarticles/detail/en/c/203152/ (accessed Feb 25th, 2014)
[3] World Health Organization, 2013. 10 Facts on Climate Change and Health. http://www.who.int/features/factfiles/climate_change/facts/en/index5.html (accessed Feb 25th, 2014)
[4] Webster P, 2013. Improve weather forecasts for the developing world. Nature, 493: 17-19.
[5] Teisberg TJ, Weiher RF, 2009. Background Paper on the Benefits and Costs of Early Warning Systems for Major Natural Hazards. https://www.gfdrr.org/sites/gfdrr.org/files/New%20Folder/Teisberg_EWS.pdf (accessed Feb 25th, 2014)
[6] National Development and Reform Commission, 2013. China’s National Strategy of Climate Change Adaption. http://qhs.ndrc.gov.cn/gzdt/W020131213626583538862.pdf (accessed Feb 25th, 2014)

 

Are carbon sinks just another natural resource?

By ucqbsva, on 6 March 2014

Blog by Stijn Van Ewijk, PhD student, UCL ISR
Join in the conversation, follow Stijn on Twitter

The use of natural resources is intricately tied up with climate change. Most notably, the consumption of fossil fuels leads to carbon emissions which in turn cause climate change. Also, carbon sinks like forests regulate the climate by taking up carbon dioxide. Just like fossil fuels, these carbon sinks are increasingly being traded. However, the commodification of carbon sinks may be harmful and counterproductive.

Photo Climate Week Blog_SVEIn carbon markets, emissions in one place can be offset either by reducing emissions elsewhere, for instance by energy-efficiency measures, or by sequestering emissions, for instance through reforestation. Carbon dioxide sequestration through reforestation turns a forest into a commodity like many other natural resources. In practice, there are clear limits to carbon offsets: space is finite and mature forests cannot sequester additional carbon. Also, there are many competing land uses such as agriculture and infrastructure.

Commodification of carbon sinks typically serves a short-term economic agenda of efficiency maximization. Proponents argue that by allowing carbon and carbon sinks to be traded, both can be produced at locations where the conditions are optimal. For instance Brazil has more potential for cheap carbon sequestration while carbon intensive electricity generation plants are most efficiently located close to high electricity demand in Western Europe.

In addition to the limited global potential for offsets, there are some other disadvantages to the commodification of carbon sinks. Here are three of them.

  • Ethically, it can be undesirable to pay someone else to take care of your harmful carbon emissions since poorer nations may be forced into selling offsets at short term profits. On the long term, such nation could benefit more from other land uses.
  • Practically, it is hard to measure and regulate carbon offsets. For example, if a forest is about to be cut, does it count as an offset to ultimately not cut it? In some countries, this ambivalence has been exploited by “planning” increased deforestation.
  • Economically, in the long run, global carbon offsets may not be beneficial. Easy offsets in developing countries reduce the incentive for innovation in production and energy technology that can bring more efficient abatement in the long run.

Unfortunately, carbon offsets programs are often seen as a legitimate option for climate change mitigation. Influential sustainability indicators like the Ecological Footprint (EF) heavily emphasize carbon uptake by forests and strongly suggest that devoting land to forest is the primary means to managing climate change. Not only nations, also consumers offset their emissions too easily by for instance buying carbon offsets along with their plane tickets.

Currently, the Western world emits most carbon dioxide while having very limited potential for reforestation. With developing countries quickly catching up, especially China, it seems more attractive to seek for long-term solutions that bring down carbon emissions than to legitimate further emissions with reforestation projects. Clearly, carbon sinks should not be treated as just another natural resource.

Photo credit: Joshua Mayer under CC

Climate Change and Water – A Link to Engender Action?

By ucftpdr, on 5 March 2014

Blog by Paul Drummond, UCL ISR Researcher

As is well known, the climate system and hydrological cycle are inextricably linked. A warmer atmosphere melts water stored as ice at high latitudes and altitudes leading to sea level rise, which in turn allows more of the sun’s radiation to be absorbed, further accelerating warming. A warmer atmosphere is able to hold more moisture, increasing the frequency of heavy rainfall events in areas of previously moderate conditions, whilst shifting climatic zones may either reduce the intensity and timing (or even remove) heavy rainfall in areas that rely upon it. Water vapour itself, of course, is the most prevalent greenhouse gas.

Might it be this relationship that eventually spurs the world into action to reduce emissions to prevent the worst effects of a changing climate?

It certainly seems possible. The recent drought in California and flooding in the south of England have both bumped climate change to the top of the political agenda in the USA and UK once more. The current Californian drought has so far lasted for nearly three years, with 2013 the driest year since records began. Reservoir levels are dangerously low, with fires running rampant across the parched landscape. The large agricultural economy has been hit extremely hard. The situation in the south and particularly south-west of the UK couldn’t be more stark. England and Wales saw the most winter rainfall since 1766, bursting river banks and overcoming defences to flood over 6,500 homes and around 50,000 hectares of farmland.

These opposing sides of the same coin directly impact the lives and livelihoods of people living and working in these areas. Naturally, they seek reasons for why this is happening to them, who is at fault, and assurances that all efforts will be taken to make sure that it does not happen again.

At least some of blame has been focussed on government policy. In the UK, a lack of dredging of rivers and inadequate historic investment in flood defences has been blamed, along with long-term trends of removing upland vegetation for pasture and expanding settlements onto floodplains (or even reclaimed land in the case of the Somerset Levels). Of course, these aspects all combine to a greater or lesser extent to produce the damage experienced. But such factors may only control what happens to precipitation once it has occurred, and not the volume that must be dealt with.

This is where climate change enters the present discourse. Of course, an explicit link between these specific extreme events and climate change cannot be drawn, however a changing climate is likely to increase the frequency by which these events occur, and their intensity when they do. Despite this, both President Obama and David Cameron have voiced their opinions that climate change very much had a role to play in recent events (or in Cameron’s words, ‘very much suspects’). Such rhetoric, particularly in the UK from a government who it was felt were abandoning their ‘green’ credentials over time, reflects the extent to which climate change, and whether and how we should tackle it, has re-entered the public debate.

Of course, the USA and UK are not the only states in which water issues can be prevalent. In many countries, the absence or abundance of water is of paramount importance – a concern this is only likely to increase over time. However, it appears that developing nations are over-represented among this number. For example, small island states and low-lying countries such as Bangladesh are likely to be the first victims of a rising sea level, whilst the nations of the North Africa are likely to be among the first to feel extended periods of chronic water shortages, in parallel to expected rapid increases in population.

Unfortunately, these are not the nations that hold the key to meaningful global climate action, and they broadly do not have the financial resources to adapt to their new climate regimes if such action is not taken. It is the developed nations, along with the BRICS, which are pivotal. It is only when these countries decide that mitigation action is indeed necessary that significant steps will be taken, and this is unlikely to happen until climate change ceases to be an abstract concept in the mind of the general populous, but a real and present issue – with the most likely manifestation of this to be when previously extreme flood and drought events become increasingly normalised.

 

 

Climate Change and Water: Stores have a response in store

By zcfad21, on 5 March 2014

Blog by Simon Damkjaer, UCL ISR PhD student

Substantial increases in the combustion of fossil fuels over the 20th Century have led to a shifting climate, whose impacts on global water resources are best experienced through changes in the global hydrological cycle.  As part of a series of posts related to the 2013 UCL Energy and UCL ISR Climate Week, this blog post provides an overview of the most direct impacts of climate change on water resources and highlights my Doctoral Research on the importance of hydrological stores under a changing climate.

water_cycle

 

 

 

 

 

 

 

 

 

 

Ice sheets and glacier retreats
Climate change has been popularly coined “Global Warming”, and as the name itself suggests, means rising temperatures.  The first way, in which rising temperatures impact global water resources is through the transfer of freshwater from a state of solid snow and ice into water as a fluid state.  The ice-sheets of Greenland and Antarctica have been melting at alarming rates over the past decades [1], which has led to an increase in the mean rate of sea-level rise of 3.3 mm/year relative to a 20th Century average of 1.7 mm/year [2].  The effects of rising sea levels, simply put, will exacerbate the risk of storm surges at coastal areas.

Furthermore, snowfall over the polar ice-sheets is predicted to be reduced.  This, in combination with melting ice-sheets, will decrease the ice-sheets’ albedo effect – that is the amount of surface that deflects incoming solar irradiation.  A reduction in albedo effect risks triggering so-called feedback mechanisms, a system of circular loops, in which the warming of the global surface is enhanced, as less incoming heat is reflected due to a reduction in albedo which is caused by ice-sheet retreat due to rising temperatures and so forth.

Although alpine glaciers are currently melting at rates three times lower than that of ice-sheets, their impacts are still felt through effects on river flow, whose influence range from moderate in mid-latitude basins, to major influence in very dry basins.  The main issue related to an increase in glacier melt rate is that it causes a mismatch and unpredictability in the timing of dry period river flows, which has implications for access to water for agricultural purposes.

Precipitation, Evaporation and Transpiration alterations
The second way in which the global water cycle is affected by a shifting climate is experienced by the ability of hotter air to hold more water, which in return affects precipitation and evaporation rates.  The effects of increasing precipitation rates are felt at two extremes.  At the one end, rainfall events will be more extreme, short-term and variable, which will lead to increased run-off and thus higher flood risks.  At the other end, the intervals between these short-lived and heavy rainfall events, will get longer, which increases drought risks.
As temperatures rise, more water evaporates back into the air, which means less water availability for crops – “less crop per drop”.  Additionally, from a biological point of view, higher CO2 levels in the atmosphere, cause terrestrial plants to transpire less, thus lowering the amount of water they use – “less drop per crop”.    It, therefore, becomes evident that the impacts of climatic changes will have severe implications for food security in the future.

Uncertainty: a key challenge
The biggest challenge to the water resources community in modelling the impacts of a shifting climate on water resources is the extreme uncertainty associated with the exercise.  Apart, from the general well-known processes, how these shifts will affect water’s wider environmental interconnectedness still remains unclear.  In fact, the Intergovernmental Panel on Climate Change (IPCC) have taken a long time to properly include the effects of climate change on water resources into their annual reports, which is evidenced by only dedicating ten pages in their 4th Annual Report.  The reason for this has not been to downplay the importance of water, whose scarcity indeed was declared the second biggest global risk at the 2013 World Economic Forum, but simply because predicting the effects of climate change on water resources, continues to prove difficult, particularly on groundwater, where data is scarce.

The importance of stores
The effects of climate change on the global hydrological cycle may appear to only lead to situations of disadvantages.  However, studies from East Africa [3], which my Doctoral Research is grounded in, suggests that climatic effects in this part of the world, will cause an intensification in rainfall, which benefits groundwater recharge.  As research in the domain increases, so does the realisation that our understanding of groundwater resources remain limited.
Groundwater stores will become increasingly important in the future, as they possess a slower response-time to climatic shifts than that of surface water.  These resources, therefore, should be considered a key adaptation strategy to a shifting climate.  However, a history of legislative neglect of the resources, means that notions and understanding of sustainable management and utilisation of groundwater stores remain in their infancy.  Thus, it remains to be seen what the water the resources community has in store for the future.

[1] Rignot et al. (2011), Geophys. Res. Lett., vol. 38, L05503

[2] Nicholls and Casenave (2010), Science, vol. 328, 151 7-1520.

[3] Taylor et al. (2012) Nature Climate Change, Vol. 2, doi: 10.1038/nclimate1731

‘Climate, resilience and adaptation’

By ucftaww, on 4 March 2014

Blog by Victor Galaz; Associate Professor, Stockholm Resilience Centre (Stockholm University)
Join the conversation and follow Victor on Twitter

The previous Lancet Commission of 2009 made the point completely clear, still the message tends to get lost in the climate debate. Climate change is fundamentally a challenge for human health. The message is worth reiterating. Policy-makers, non-governmental actors, business and civil society are in desperate need of trustworthy assessments of innovative policies, institutions and proposals which could help us stay ahead of human health challenges posed by climate change.

Working group 2 of the Lancet Commission is entitled “Resilience and Adaptation Responses”, and consists of an international interdisciplinary group of prominent scholars working at the interface of health, global change, and resilience (see membership). Our ambition is to bring together and feature promising adaptation approaches; discuss their costs and scalability; and identify possible win-win trajectories. This is far from a simple task for several reasons.

First, climate adaptation often entails a combination of several types of interventions. That is, they often include changes in economic incentives, the placement of new technologies, modifications in natural systems such as ecosystems, institutional reforms, and new forms of decision-making and funding arrangements. In addition, these interventions differ considerably across sectors (e.g. agriculture vs. energy production), and the scale of interest (e.g. local, national and regional).

Second, while some of the human health impacts of climate change can be partly predictable, gradual and even reversible, other might emerge as surprises. That is, events that fundamentally differ from expectations and with the potential to trigger health crises – events that require prompt interventions despite large uncertainties and limited time to act. Hence adaptation policies and institutions not only need to match known threats, but also need to be robust to surprising changes created by human, environmental and technological uncertainty.

Third, there are likely to be limits to adaptation. Bluntly put: how far we push Earth’s climate and ecosystems before the human health repercussions are of such scale, speed and intensity that human societies will systematically fail to adapt? And if that is the case, when are policies, which support transformation, rather than adaptation, needed?

These are three major issues that this working group will try to address. There are no easy answers, nor magic “silver bullet” solutions. But as we intend to elaborate, innovative policies, institutions and proposals on possible means to adapt to future human health challenges do exist. And some of these are possibly scalable, effective and entail a potential to create multiple “win-wins” afar from improving human health. Our hope is that our work will contribute to a much-needed focus on health solutions, and not just health problems created by climate change.

Commissioners of WG2 of the Lancet Commission 

  • Prof. Yin Yongyuan, Tsinghua University (China), co-lead
  • Ass. Prof. Victor Galaz, Stockholm Resilience Centre (Sweden), co-lead
  • Prof Geogina Mace, UCL and Royal Society (UK)
  • Professor Bing Xu, School of Environmental Science and Engineering, Tsinghua University
  • Dr. Li Moxuan, Center for Earth System Science, Tsinghua University
  • Dr. Koko Warner, United Nations University
  • Prof. Thomas Elmqvist, Stockholm Resilience Centre (Sweden)
  • Prof. Delia Grace, International Livestock Research Institute (ILRI), Kenya
  • Dr. Sukaina Bharwani, Stockholm Environment Institute-Oxford and weAdapt

How Community Architecture may help Decarbonisation

By Harsha P T Kansara, on 4 March 2014

Blog by Tia Kansara, UCL-Energy PhD student

Decarbonised local communities

Can people be the solution to the decarbonisation challenge in UK communities? With present reduction targets of CO2 emissions, it is only a matter of time before there is a clear and defined role for residents to play in the bigger picture of low-carbon living.  Through intelligent, integrated strategies, community architecture methods of active learning and skill-deployment may provide a process for decarbonisation.

Sustainable communities living within a cradle-to-cradle environment, promoting transition town-mentality and growing local resources may have more to teach us. As with community architecture, could there be a resource architect in your local neighbourhood who could pool the resources?
 
People are the power: The community architecture way

Over many years of slum experience, Kansara Hackney Ltd. have highlighted, internationally, the long-term energy saving potential of tapping human resources within slums and communities. Rod Hackney (co-director) completed schemes, and those where others have followed, have had an impact on politicians, to such an extent that the mass demolition movement has been replaced with an openness to harness the latent energy of slum dwellers.

Poverty Reduction

The community architecture methodology has benefited sustainable urban development and influenced many countries around the world. In 1971, 37% of the world’s population of 3.7 billion lived in urban areas. In 2003 UN Habitat reported a sixth of humanity lived in urban slums. In 2013, of the world’s 7.1 billion human beings, 862.5 million live in urban slums. This figure would have been 200 million higher without the UN Habitat’s highlighting slum improvement methodologies and the vital latent human energy that is waiting to be encouraged within the World’s slums. The community architecture methods have shown, since 1971 that there is an alternative to the bulldozers. Further, after winning the trust of officials, banks and the wider community around the slum can help deliver sustainable and long-term solutions to resident’s former housing problems. These schemes are recognised as pioneering examples of how ordinary people can thrive if encouraged to do so.

If sustained, the community architecture approach augurs well for world peace and stability, and UN Habitat’s mission of reducing the anticipated 1.4 billion estimated slum dwellers by 2020. Something can be done to reduce this figure. Slum dwellers should be encouraged to accelerate their interest in, and adopt wholesale the community architecture approach. It can be applied to each and every slum in the world.

Social Inclusion and Reskilling

The growing international prevalence of slum communities and the huge human potential they offer the sustainability debate, is perhaps the 21st Century’s greatest challenge. In slums, no rubbish or sunlight is wasted. Bio fuel from human waste, self-help solar collectors, re-cycling of scrap materials (leather, tin, electrics, plastic), regular maintenance of buildings, all work towards healthy and profitable entrepreneurial environmentalism contributing a major part in the green revolution of saving the planet.

Cities in the Global South: A healthy climate for development?

By ucftsi6, on 4 March 2014

Blog by Mitakshi Sirsi, MSc Environmental Design and Engineering at the Bartlett School of Graduate Studies

Urbanization has spread rapidly in the past decades and Humanity has chosen it as the path it intends to take in the coming future. Cities are undoubtedly going to be a defining factor in the way we progress into a new era. Hopefully,  In a utopian world – aan era of climate-change mitigation and adaptation and clean energy.; A more sensitive, equitable, rational and well, nicer era!

The first impression one might have when considering cities, developing countries and climate change is, “it’s complicated!” It might just be! I had a similar reaction when I asked myself that very question as a rookie architect trying to build “green buildings” in a developing country. I hardly imagined that the question would throw up so many aspects to explore, so much hope and so much despair all at the same time; because the climate-change story is not just a story of numbers and statistics or problems and solutions – it is a story of people and the planet, of humanity, and that is probably the most complicated bit of it all.

Through this short article I hope to outline some of the major ideas I have come across with respect to climate change, cities and the promising, developing, global south to give the reader a brief glimpse into the current complex situation the way I see it.

Why do we need to talk about cities in the developing world?

Urban areas currently host more than half the world’s population,population; cities allegedly use up 67% of the world’s resources, produce 75% of the world’s carbon emissions but only take up about 3% of the world’s land mass. The UN estimates that people living in cities will go up from 3.2 billion to about 5 billion by 2030 and up to 7 billion in 2050. This roughly translates to about 7 out of every 10 people on the planet living in an urban area by 2050. Currently, most of this growth is in the developing world (so around 5 of these 7 people are going to be in a developing country), three-fourths 3/4th of the largest cities in the world are now in the global south and the between 2000-10 the developing world accounted for more than 90% of the growth in cities in the past two decades!

Data varies , so does its interpretation, but whatever these varying numbers are, they indicate a clear trend-shift which requires a good bit of attention. It is important to understand that some of the challenges that these cities and countries face are likely to be very different from the post-industrial revolution cities. Needless to say, developed countries currently face their own set of problems; there may be a lot to learn from their experience and by not repeating past mistakes.

Adverse impacts of climate change are already being recorded in different parts of the world – in the past decade, floods and sea level rise have affected up to 40% landmass of cities like Dhaka, these extreme events not only have direct immediate impacts like loss of life, and property, livelihoods but also indirect, long- term impacts requiring us to focus on making cities more resilient to uncertainties like loss of fertile land and impact on food security.

Climate-change may be taking over the conversation space on your lunch break, but isn’t it scary to imagine that it is taking over homes, agricultural lands and lives in some other parts of the world? (In the past few months, it has been doing that just a few kilometres south of London too!)

What does our future look like?

We don’t really know.

Not that I’m speaking from any personal experience of crystal gazing, but ‘uncertain’ is the term everyone is using. What climate scientists say they know for sure is that global mean temperatures will increase, more ice will melt, sea levels will rise, oceans will acidify more and that reaching a 2 degree C shift may push us to a tipping point – but what that means in exact terms is variable.  and may be different across the planet. Developing countries will face more water stress, rain-fed agriculture will suffer, floods and droughts might increase, and monsoons might fail or get more intense. The IPCC (2007) notes that “Taken as a whole, the range of published evidence indicates that the net damage costs of climate change are likely to be significant and to increase over time.”

However, even these extreme predictions have been criticised by many as conservative. Al while some argue that an alarmist view might accelerate necessary measures to mitigate. Societies and ecosystems are likely to be impacted in different ways depending on where you are on the planet. though iImpact on societies and ecosystems may be different depending on your location, developing countries may face more water stress, rain-fed agriculture will suffer, floods and droughts might increase, and monsoons might fail or get more intense. GgGlobally. It means an it means an increase in the likelihood of impacts on food security and health, possible conflict, more migration from stressed areas, intensification if the energy crisis and more extreme weather events.

The general consensus is that (poor) people in cities of poor countries will face the brunt of anthropogenic emissions related climate- change  (incidentally, developed countries are largely responsible for GHG emissions till nowhistorical data proves that these emissions are by the developed countries), and the global inequity related to energy use and energy poverty gets highlighted in this context. Some of these complicated and difficult issues are what global alliances and meets like the COP 19 and previous UNFCCC protocols are currently trying to address.

What are the core issues developing cities face?

Environment related challenges: Rapid growth increases stress on the physical structures of our cities – polluted air and water, degradation of ecosystems, overcrowding leading to health problems and such. It also puts more stress on surrounding natural systems as cities become more resource intensive when they grow. Current urban economic systems tend to be unsustainable and in the race for quick economic development, holistic sustainability goals get left behind. Some of these are evident in recent air quality reports in megacities like Delhi “Children in Delhi have lungs of chain-smokers!”

Economic and Social inequity, Governance and management: Urbanization has always brought with it a range of possibilities – cities are thriving, resilient places with ample opportunity, jobs, education, education for women, social upliftment and escape from degraded agricultural land and rural unemployment. They have been centres of migration for these very reasons but these opportunities and upliftment also brings with it them poverty, hunger and disease. Large populations in developing megacities live and work informally, about 40% of the population of cities like Bangkok and Manila live in slums. These places may be centres of economic and social activities despite the poverty, but basic infrastructure suffers, leaving them more vulnerable to extreme events. Governance and planning also play a very important role.Governance is difficult and civil systems in developing countries are not yet equipped to manage these issues.

Energy, Emissions, buildings and urban climate issues: Cities require lots of energy in different forms. Most cities still use fossil based energy and this can increase emissions greatly,. it also highlights direct impacts on energy security. The building sector is linked mainly to energy use, carbon emissions and waste, (global: 40% of energy consumption, 12% fresh water & 40% waste volume) and these numbers sometimes make us forget that buildings essentially support city activities, they are the metaphorical “core organs” of cities and are fundamental to the functioning of any city. Housing deficits, construction technology knowledge, infrastructure and “prosperity” are all a part of this equation.

The IEA estimates that Asia’s share of global energy consumption is expected to increase three times by 2030. These increases may be largely attributed to cities, and a big large chunk of that to buildings. Urban climate issues like overheating (due to the heat Island effect) can have adverse impacts on energy use,use; especially in the tropics where cooling needs are already high (anthropogenic heat added to this equation in buildings just makes it worse). Density in cities may not allow the full use of renewables and reliance on fossil fuels may be inevitable.

Water and Waste: Access to clean water, sanitation facilities and sustainable physical infrastructure for these systems is one of the biggest challenges cities face. The already overloaded and sometimes crude existing systems are not equipped to serve such rapid growth and may often fail, resulting in health outbursts and other social and economic problems.

Who is dealing with the problems and how?

Despite all these problems cities are growing and are very important and thriving economic, cultural and social centres. With climate-change and energy security bagging important places in the list of current global challenges, many steps are being taken to manage these complicated issues. Agencies such as The World Bank, ADB ACCCRN and UN have several programs that address these problemsissues, research bodies and universities (like our very own UCL!) are creating knowledge in the field and industry pioneers are testing solutions. Although investment in climate proofing and resilience building is currently low, the sector is growing, partly for the sake of the environment and largely because it is starting to make economic sense. Policy is changing too, local groups are starting to address problems from grassroots and governments through top-down approaches. This is especially important because both problems and solutions are contextual, but also need to be brought together as a whole.

Having said this, the situation is far from ideal. As a community of people addressing this large scale global challenge, we seem stuck between a future we cannot predict and a past we seem to keep ignoring while we jump from managing one crisis to the next, reacting and not necessarily pro-acting.  Knowledge in the field is vast and we come up with new, innovative ideas often. Experts and groups from multidisciplinary backgrounds are not coming together to look for more answers.  So iIt seems that the time has come for us to put more effort into applying this knowledge to the real issues through more policy, governance and management. Do we have an answer? Are we doing what we can? I don’t know. But then again, I don’t, but mmaybe it is not just about doing what we can, but about soldiering on and doing what we must.

Notes and Further reading:

The terms Global South and developing countries and developing world have been used interchangeably; population and other data are from UN and WHO sources.

This article is a short collection of what I have learnt in my exploration of this complex topic, I would be very happy to learn more, please email me at mitakshi.sirsi.13@ucl.ac.uk with any comments or observations you may have. Conversation is always welcome!
•    A Guide to Climate Change Adaptation in Cities: Web toolkit, World Bank http://www-esd.worldbank.org/citiesccadaptation/index.html
•    Climate Change Resilience, Rockefeller Foundation http://www.rockefellerfoundation.org/our-work/current-work/climate-change-resilience/asian-cities-climate-change-resilience
•    “Children in Delhi have lungs of chain-smokers!” http://indiatoday.intoday.in/story/pollution-in-delhi-cng-children-in-delhi/1/344904.html
•    UCL and Future Proofing Cities http://www.futureproofingcities.com/
•    Some interesting scenarios people have come up with – Future Timelines – http://www.futuretimeline.net/21stcentury/2050-2059.htm

Climate change, extreme events and human health

By ucbtgma, on 3 March 2014

Blog by Professor Georgina Mace, Centre for Biodiversity and Environment Research (CBER)

Join the conversation and follow Georgina on twitter

The past few months have highlighted the impacts that extreme events can have on people’s lives and livelihoods. Ranging from floods in England, storms in Wales, hurricane Haiyan’s devastating effects in the Philippines to extreme heat in Australia, we have seen striking examples of cases where large numbers of people are exposed to natural hazards with which they are poorly equipped to deal. Whether or not these events can be attributed to anthropogenic climate change, they highlight a few points about how vulnerable people are to natural events when those events occur on a scale and at a level of intensity that current systems cannot cope with. It is striking to observe how when infrastructure such as roads and electricity fail, people everywhere suffer a great deal, and the very young, the weak, the elderly and the chronically ill, suffer more than the rest.

The work for the Lancet Commission report, CLIMATE CRISIS: EMERGENCY ACTIONS TO PROTECT HUMAN HEALTH’ will focus on the potential health impacts of climate change on people. These may have often been eclipsed in many discussions by current concerns about economic growth and failing infrastructures. But health and wellbeing is our primary concern. We will review and highlight some immediate costs to people’s wellbeing that will be a consequence of climate change. We are concerned with people’s mental and physical health, their quality of life, and sense of place and security.

My own interest in this area has come about from studying the impacts of climate change on ecosystems and wild species. As for people, the same amount of climate change has very different outcomes for different ecosystems and species, and is generally related to their history (what they have experienced in the past), their biology (their life history and habits) and their geography. Certain kinds of species which have very low tolerances for environmental variability, poor dispersal capability or adaptive potential will be much more vulnerable to even modest changes to climate variables than those that are less sensitive and more resilient. We have mapped out areas of the world where the most vulnerable species are expected to be exposed to the most extreme changes (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065427). I think this work has relevance to people in a couple of different ways. First, it is likely that the areas where there are sensitive ecosystems and species will also be areas where people may be most at risk because the world’s ecosystems are central to supporting people’s basic needs for a good life; for example, food, freshwater, protection from hazards and diseases. Secondly, a recent history of coping with extreme events prepares both ecosystems and people better, and geography is an important determinant of both environmental extremes and basic resources.

Considering extreme events and their impacts on people, it is very difficult to develop resilience to events when they occur at low frequency and when there is little personal experience or community history of dealing with them. By definition, extreme events are rare; perhaps one in a hundred years or more is what is expected on average. But given the local variability of weather and storm patterns, and the fact that we measure many different events, something unusual will be happening somewhere most of the time. In addition to that, recent increases in population numbers, in wealth and mobility means that people are moving to new areas more often, and they often choose to live near water or on coasts and near the sea. These are areas most exposed to many extreme events and are already home to most of the world’s people. Space is limited and so increasingly people are building homes and living in more vulnerable areas such as river flood plains and coastal zones. Recent increases in the impacts of extreme events are mostly attributable to an increased exposure of people to hazards such as earthquakes, floods and storms, rather than to an increased frequency of such events. So, in thinking about climate change and the impacts on people it is important to separate the intensity and frequency of the events themselves from the impacts that they may have on people.

Recent storm and flooding events have mostly been abrupt and violent. Such events are predicted to increase in frequency under climate change, so whatever the cause, they can show us clearly the kinds of problems that future generations will have to face. But of course, not all such events are so dramatic; there are also slow onset events that will ultimately be devastating for some people too, for example sea level rise causing coastal flooding and inundation, oceans acidulation affecting marine systems, heavier precipitation due to the greater amounts of water held by a warmer atmosphere and severe heat and periods of drought affecting food and water supplies.  All of these will have direct and indirect impacts on people’s lives and affect health and wellbeing in many ways.

Understanding how the climate will change, and how this will influence the frequency and severity of slow onset and extreme events is very important. We need this information to plan and prepare for what may come. But on its own this information is not enough. We also need to look at where the risks are greatest because there are large numbers people who will be exposed to the hazards, and maybe where these populations include people who are especially at risk.

Among the people exposed to extreme events, some are much more vulnerable than others. In the UK we might be concerned especially for the elderly and people with chronic illnesses or disabilities. In the aftermath of Hurricane Katrina in New Orleans it became clear that for some people affected by the event, their social and financial wealth made it easier for them to pick up a new life elsewhere; not often an option for the poor. The same comparisons are useful globally. We can ask where the most vulnerable people are, and which of these are most likely to face climate change related hazards that they will have difficulty dealing with. This was an approach taken in a recent report from the ODI, UK Met Office and Risk Management Solutions which examined the relationship between disasters and poverty, and concluded that:

– extreme weather linked to climate change is increasing and will likely cause more disasters.

– such disasters, especially those linked to drought, can be the most important cause of impoverishment, cancelling progress on poverty reduction.

– Up to 325 million extremely poor people will be living in the 49 most hazard-prone countries in 2030, the majority in South Asia and sub-Saharan Africa.

The ODI report highlights overlaps in geographical areas where poverty, climate-change related hazards and weak governance are likely to overlap, and hence areas of highest priority to consider to alleviate future suffering.

G Mace Blog

 

 

 

 

 

 

 

 

We are developing this approach for the Lancet report to consider the evidence that climate change will increase extreme events, what and where these may be, who they will affect most severely, and what the options are that people will have to avoid the worst impacts.

The work being undertaken here will also link to a report on Resilience to climate change related extreme event being prepared as a science-policy output from the Royal Society