X Close

UCL Energy Institute Blog

Home

Blogs by staff & students of the UCL Energy Institute

Menu

Among China’s top three energy sources, two are now renewable

By ucqbbl0, on 12 December 2014

While browsing online for information about electricity generation from renewable sources, I found a rather surprising “olds” reported by CleanTechnica back in January 2013, that China’s electricity produced from wind has already surpass the amount from nuclear, hence became the third largest source of electricity. This implies a seemingly impressive achievement: among top three energy sources in China, two of them are renewable, hydro and wind power. This is really remarkable, even compared with most developed economies in the world. Based on data provided by IEA, advanced economies including the US, the UK and Germany have their electricity mainly from coal, gas and nuclear. None of these sources is renewable!

boran liShould we applaud for this achievement of China, one of the biggest polluters in the world? Ehhh, probably we need to look deeper into this firstly.

One reason behind why wind could make its way into the top three is that the top two sources produce more than 93% electricity in China; more specifically, around 76% from coal and 17% from hydro (around 5% for wind in 2013). With this two big players in electricity generation, it is not that hard for other new growing technologies to join the team of top three, while no significant impact upon carbon emission could be realised during this process. Even though, the 17% figure for hydro itself also looks very impressive. But recently, there are many debate in China about if it is worthy to decarbonise by building dams, considering their significant by-product of damaging local ecosystems. The biggest dam in the world, Three Gorges Dam, was once a national treasure of the Chinese public and an important showcase of the powerful Chinese government, but if you search on the internet now, all you get are its damages to local weather, endangered species and reservoir area geological structure. Due to lack of rigorous planning and impact assessment before constructions of many government hydro-power projects, and countless resulted side effects, it is a growing consensus in China that all the dames will all be pulled down, sooner or later.

Similar problems occurred to wind energy development as well. For many local governments, one of the main objectives of developing wind energy is vanity of local officers. This leads to the issue that local government lacks incentives and therefore expertise to conduct detailed planning before building up wind power plants. In many cases, poor integration planning and inadequately developed electricity storage technologies raised the issue of electricity waste. In 2013 the amount of wasted electricity was estimated to be equivalent to the whole year usage of Beijing, this means only 2.5% of actual consumed electricity in China came from wind last year. Compared with the 5% production figure, half of them was thrown back into the air. Moreover, in some extreme cases, government officers only realised the wind power plant was not connected to the grid after the construction was finished.

We should not deny the great achievement that wind produced electricity in China soared 1580% from 5710GWh in 2007 to 95978GWh in 2012, which cannot be done without a strong centralised government. In less developed market economies like China, private businesses may take longer to respond to changes of market signals and advances of technologies, it is therefore government’s responsibility to plan and build the future. But with a strong Soviet style planning tradition, Chinese government still need time to learn how to give the freedom back to the market. Nowadays, even with generous subsidies provided by the central government, many green-tech businesses are complaining that they are physically crowded out by large scale wind and solar power plants invested by local governments. This conflict of crowding-out is set to be more intense in China than in well-developed democratic countries, considering China’s capitalist economic based and the single party bureaucratic (deliberately avoid using a strong word) upper structure. Given all the negative impacts from state initiated projects, it might be high time for government to learn when and where to take its muddy hands off, and let the market go.

EPSRC visit the UCL Energy Institute

By ucftcbb, on 3 December 2014

On Friday the EPSRC visited UCL Energy to host a workshop discussing future directions for Energy research funding. About 50 delegates from across

Prof Bob Lowe of UCL-Energy welcomes EPSRC

Prof Bob Lowe of UCL-Energy welcomes EPSRC

UCL attended the day which included seminars, interactive workshops and plenty of time for lively discussion and debate. Energy research accounts for 23% of the EPSRCs funding portfolio, and is the largest industrial sector directly supported by EPSRC.

Jason Green, Head of Energy at EPSRC, introduced the morning session, focusing on our need to make a case for energy research that is not just all about CO2 emission reductions, but that addresses the ‘energy trilemma’ of:

  • GHG emissions
  • Security of supply
  • Reducing costs

It was great to hear that there is a strong interest in expanding UK energy research capacity, and that there are opportunities to develop more international work in the area. This was followed by an introduction to the UCL Energy Institute’s energy research by BSEER Director Professor Tadj Oreszczyn.

Next, we formed small break-out groups to discuss the question ‘what research areas would you protect, reduce or grow?’ This was a challenging task as, unsurprisingly, everyone believes their own research area should be protected or grown! However, we were forced to think about how we would defend our work in the context of the wide range of energy research that is currently being funded, and how our own research feeds into the overarching aims of the ‘Energy’ theme.

After lunch, there were a series of interactive parallel workshops covering the following themes:

  • Developing leaders
  • Cross-disciplinary research
  • Building international reputation
  • Impact
Jason Green of EPSRC opens the morning session

Jason Green of EPSRC opens the morning session

I attended the first two on the above list. In ‘developing leaders’ we heard about the EPSRC fellowship scheme for energy research. Fellowship are available for ‘post-doctoral’, ‘early career’ and ‘established career’ researchers and may provide a great opportunity for career progression.

Cross-disciplinary research is a particularly challenging endeavour, yet one which is increasingly important as it becomes apparent that the mono-disciplinary approach falls short when it comes to addressing the complexity of energy research.

Professor Neil Strachan set us the challenge to consider how our own disciplines could contribute to a specific research brief and then to suggest how other disciplines could support us in achieving this goal. We were divided into groups of social scientists, economists, engineers and natural scientists. We then shared feedback between the groups to see if the services we were offering from our own disciplines aligned with what others felt it would be useful for us to contribute.

Needless to say this provoked a lively response which we were still debating when the session drew to a close…

Overall it was a stimulating day and we’d like to thank EPSRC for coming to see us.

Everything we do contributes to climate change

By ucftcbb, on 7 March 2014

Blog by Carrie Behar, UCL-Energy PhD student
Get invovled in the conversation: Follow Carrie on Twitter – @LoLoStudent

Being asked to prepare a blog post for this year’s climate week got me thinking about how my work relates to climate change. To me, climate change is a huge and scary thing. It feels totally beyond my control, and if I do spend too much time thinking about the magnitude of the problem, I feel like giving up altogether and running away to aDream 3 desert island. The problem is, if we all did that, it would be only a matter of time before all the desert islands got full, that is if they weren’t first subsumed by rising sea levels.

Another problem with desert islands is their lack of high speed broadband, lively high streets with shops and bars, and comfortable spaces where I can sit and think and read and write, occasionally engaging in stimulating conversations with my colleagues, or grabbing a bite to eat in a local café. Furthermore, much as I like the idea of spending my evenings lying in a hammock under the stars, I also thoroughly enjoy my own personal routine of waking up in a warm and comfy bed on a Saturday morning and then wasting an hour or so playing on Twitter whilst building up the motivation to face the gym!

So here I am, and here are lots of us, living our lives very much within the constraints of the culture within which we were born and raised. We live in heated (or cooled) houses and flats, eat food imported from all over the world, travel longer distances that we feel comfortable with to get to work or school, and spend much of our time indoors, usually connected to some kind of electronic device. And allReality 3 of these activities, consume energy – lots of energy. This energy that we rely on to live our ordinary lives is generated from a combination of burning of fossil fuels and utilising renewable resources such as wind and solar. And it is the burning of fossil fuels that is accelerating the changes we are seeing in our climate, as explained here.

 

What can energy demand research do to help?

Ultimately, the reason I am here, doing my PhD and writing this blog is because, recognising the contribution of energy consumption in buildings to changes in the world’s climate, the UK Research Councils felt it was worth providing funding for PhD research in both energy supply and use. But what am I actually doing and what do I hope to achieve? And can I really make a difference with my tiny contribution to the vast pyramid of knowledge?

At first glance, looking at how people are adapting to living in new low-energy homes with ‘whole house’ ventilation systems is a long way away from working on ‘solving’ climate change (more about my work here). However, if we understand that energy used in our 27 million homes accounts for nearly a third of total UK energy use, it’s at least clear that there is a strong need to reduce the energy consumption of both new and existing dwellings.

As around 60% of domestic energy use can be attributed to space heating, an effective way of achieving this reduction is to seal up gaps and cracks around windows, doors, floors and roofs to make our homes more airtight and less draughty, thereby keeping the heat in. However, we cannot completely seal up homes, because the activities we carry out inside them generate a range of pollutants which need to be removed. Ventilation is the controlled provision of clean air and the removal of stale air, which typically contains CO2 exhaled by people, water vapour from showering and washing, and smells generated when cooking. These byproducts of everPyramid 3yday domestic activities must be taken out to keep us healthy and prevent nasty things like mould developing.

Why technologies alone won’t fix the problem

Several technical solutions have been proposed to deal with the problem of ensuring sufficient ventilation without wasting any heat energy. These are explained in detail in this Energy Saving Trust publication. The idea is that, during winter, air is only permitted to enter and leave through designated and controlled openings, such as trickle vents and ceiling extracts. The house stays toasty and warm, while harmful  pollutants are removed and replaced by fresh air from outside. Problem solved, right?

Unfortunately not. Although these systems have potential, the deployment of technology is not in itself a guarantee of success. Monitoring of energy consumption at completed homes which incorporate these systems repeatedly highlights the large gap between predicted and actual energy consumption. There are a number of factors that contribute to this performance gap and the way that people use and interact with their homes is but one of them. That’s not to say that people are necessarily doing something wrong; rather, there are a wide range of normal activities that we carry out which can impact on energy use. For example, do we regularly cook for family and friends or eat out most nights? Do we prefer baths or showers? And how much time do we spend at home and at what temperatures do we feel most comfortable?actual bath 3

When recommending, specifying or installing a specific ventilation system, there is an inherent assumption that the people living in the house will act in a certain way to get the best use from their technology. The ‘model’ resident would leave the windows closed at all times when the heating is on, and rely on the ventilation to do its job. They would press the booster button each time they cook or shower, and only dry their clothes on the designated drying rack in the bathroom. Furthermore, they would make sure the extract vents were kept free of dust and grease and ensure that filters are changed regularly so that system performance does not deteriorate.

We won’t improve anything without understanding people

Unfortunately this assumption fails to acknowledge the day to day realities of life. Very few of us go about our existence worrying about the energy consequences of our every activity. If we did, we would get very little done and end up a bit mad (and start thinking about desert islands and the like…).

saucepan 3Although you cannot, rightly, force people to behave in a certain way, I would like it to become easier for people to do the most efficient thing, and in the case of domestic ventilation I think we have a long way to go before this is the case. Over the course of my studies I have met people who are largely unaware of the presence of controlled ventilation in their home, let alone knowing what to do with it, as well as  a family with a broken booster button who had no option but to open the window to let out cooking fumes.

Completely unsurprisingly, I am yet to meet someone who is able to explain to me correctly what MVHR, MEV or PSV are and how they work (and if you didn’t get round to reading the Energy Saving Trust publication I mentioned earlier then you probably don’t either!). The residents I have spoken to have never been told that there are filters that need changing, nor that they could save energy and money by keeping the windows closed when the heating’s on. The reality is that we open the windows and forget to close them, dry clothes on radiators, put off housework until it is absolutely necessary and we find a way round things like broken switches that doesn’t involve us calling a handyman.technology 3

And this is why, I believe, the problem of climate change is so hard to resolve. Society seems to be driven by a desire to invent technical solutions  to fix problems. But when we break down the issue into smaller and smaller chunks, for example individual houses and their ventilation systems, we are always left with people and organisations interacting with material things  in unexpected ways and not just the objects themselves.  And it may just be that rather than relentlessly, modelling, simulating and optimising how technologies work, the solutions to global problems could lie in understanding how the minutiae of day-to-day life shape our energy use.

Carrie Behar

 

 

Keeping people on the agenda

By ucftfmw, on 7 March 2014

In our post for Climate Week 2013, the UCL Energy Social Sciences Group highlighted the importance of understanding the way that people view energy. What people do can be difficult to predict; as we pointed out this can limit the success of strategies aimed at reducing energy use. In our previous post, we commented on the recent launch of the Government’s Green Deal, a programme aimed at improving the efficiency of dwellings by providing a loan for householders to invest in interventions like insulation and more efficient space heating technologies. This loan is then repaid through the energy savings delivered by the intervention. At that time, there were concerns about low uptake of the scheme. One year on we find ourselves with a scheme that has, so far, struggled to take off, prompting widespread media coverage and headlines like: “How the Green Deal turned into the green disaster”[1].

How did the Green Deal turn into the green disaster? There are issues with the complexity of the process (a multi-stage procedure, requiring, for example, an initial assessment before any works can take place), the financing mechanism used, skepticism around expected savings and general awareness of the scheme. Arguably, one of the key challenges is the sheer number of different stakeholders involved in the process. We have the homeowner, the person performing assessment, the tradesmen involved in installing the interventions, the organisations financing the scheme and those involved in the supply chain, all of whom have to be suitably aware of, and able to play their part in, the Green Deal. Coordinating so many individuals and organisations is not an easy task. Somewhere in this complex network, something appears to have come unstuck. To really understand the barriers to uptake of the Green Deal, we need to take a holistic approach to investigating the people and groups who are involved at all levels. Drawing on theories from the social sciences can be an effective way of unravelling the complex interactions between people, energy, organisations, policies and the physical fabric of the built environment.

For example, sociological theories position energy use as largely invisible[2] and instead focus on the routine practices that people carry out in their daily lives, some of which consume energy and resources (e.g. cooking a Sunday roast) and some of which may actually save energy (e.g. the daily activities of an insulation installer). In these theories, the context in which certain practices occur is very important. So, for example, what are the circumstances under which a homeowner would decide to make improvements to their home? Are they really interested in saving energy, or would they prefer that to be a happy side effect of installing a brand new kitchen or adding value to their property by building out the loft? And how do they feel about taking out a loan to finance these kind of ‘invisible’ improvements that the Green Deal offers? These are the kind of questions that social scientists ask, questions that need to be investigated much more if we are to boost the success of promising, but highly complex, programmes like the Green Deal.

The relevance of the Green Deal to a number of the topics relating to climate demonstrates the multi-dimensional nature of these issues. Five topics were outlined for the content of these Climate Week blogs; these are the relationship between climate and health, poverty eradication, water, resources and energy. Arguably, the Green Deal has implications for all of these topics within the context of buildings. For example, the quality of our buildings and thus the energy, and money, it takes to be comfortable in them has a direct impact on the health and poverty levels of their occupants. So, not only is the lack of Green Deal uptake a problem involving multiple individuals, it also impacts on several elements of the climate problem. Consequently, it’s important to understand this problem, and so many others within the energy field, from a range of different perspectives.

The UCL Energy Social Sciences Group recognise this and have built an expanding group of multi-disciplinary individuals, all looking at energy problems from a variety of disciplines and perspectives. In the last year we have continued to build on the strengths of the Social Sciences Group, including hosting a regular reading group and welcoming a range of external speakers from the wider UCL community and beyond. These events have covered a range of topics, varying from studies of the tradesmen installing external wall insulation to transition management in low-carbon neighbourhoods. We are currently planning a conference aimed at bringing together the different perspectives of social sciences and energy that are being applied across UCL. If you’d like to find out more about the group, visit the UCL-Energy Social Sciences Group website, or email ucl.energy.ssg@gmail.com.

 

 

 

 

 

 

 

 



[2] DECC & CHATTERTON, T. 2011. An introduction to Thinking about ‘Energy Behaviour’; a Multi Model Approach. In: CHANGE, D. O. E. A. C. (ed.). DECC.

 

 

Climate Change and Resources

By ucqbaza, on 6 March 2014

Blog by Alex Zardis, Student at the Bartlett School of Graudate Studies

Climate Week means different things for different people, it may mean the promotion and campaigning of a sustainable and low-impact lifestyle to influence the next generation, for myself, I see it as a chance to reflect on our individual behaviour and to look at our personal resource use and attitude. Many different parties are rallying and legislating towards the use of renewable energies and the sustainable use and recycling of materials/products. This is absolutely essential for our societal evolution and these efforts are the first steps forward in an enormous path towards sustainable living, but these steps alone without a major catalyst will not see the major structural change that is needed, not least in our lifetimes. My previous thermodynamics lecturer in Cardiff believed that we will still be using coal and oil as a main source of fuel at the end of our lifetimes, if this would be true it brings a realisation our society has built its infrastructure so dependent on these fuels and related technologies. Individually, to increase the efficiency of our resource use we have a very strong alternative to make a significant impact. We can contribute on a personal scale and little by little, a lot is changed.

Cautious resource use does not strictly have to relate to combating climate change and is generally good practice. As a generation whose elders were taught to use resources carefully and wisely under strict military rationing, these practices have sometimes passed down and arrived to ourselves, under the wise words of our grandmothers ‘never to waste a penny’, or rather dubiously perhaps never to waste a really old, out of date can of baked beans or whatever may reside far too long in their cupboards! However we are all guilty of falling short to expectations of sustainable resource use. Despite good intentions and a positive attitude to resource use, sometimes we fall guilty to convenience and to laziness. Maybe it’s just too far to keep take that can or plastic bottle to find the next recycling bin rather than the close waste bin, maybe the appeal of a brand new iphone or computer rather than replacing a screen or battery is appealing. Possibly a now un-used but perfectly fine item lays dormant while the chance for it to be passed on, sold or re-used is wasted.  We can use this opportunity of climate week as a chance to make more of an effort in our lives to re-use items and utilise the entire life-cycle potential of our products.

Local councils and the government already provide the services for us to recycle a great range of products, however we should be increasing our use of these facilities. An entertaining and ‘easy to digest’ set of promotional video shorts have been created by the government to explain the actual process that our products go through whilst they are recycled, these are available to view at this website and highly advised to watch! www.recyclenow.com/how_is_it_recycled

These facilities can help discourage the dumping of waste via landfill and to reduce electrical waste and its illegal exportation. Most electrical products are covered under an EU legislation called the WEEE waste electrical and electronic equipment legislation, if you look on any electricity using product within your vicinity, it is likely that it will be covered by this legislation and have a crossed out wheelie waste bin WEEE logo displayed. This legislation and logo display means that the companies involved in its retail and distribution are obliged by law to cover the costs for the product’s safe return and recycling. Whilst this option is provided it is not particularly well known or advertised, hence it is now our turn to be more pro-active about the use of these services.

From another perspective our resources can have their lives extended by re-use rather than re-cycling. Only recently a great local example has been demonstrated and pursued. Reclaimed material leftover from the 2012 Olympic Games was sourced to create a community skatepark in Hackney Wick, East London. This story was supported by Google and told as a commercial. The story video can be seen here: http://www.youtube.com/watch?v=GvgqDSnpRQM. Since its inception it has seen its lease extended by a year, offering local skateboarding, bmx and rollerblading enthusiasts another season of riding.

Concerning the overall perspective of resource use within our society, we are in an age where we are viewing sustainability and the resourceful use of our belongings with increasing positivity. Although despite this It is saddening that behind the individual perspective that this blog entry covers, major entities, companies, corporations and governments still consume far more than they need, and end up with left over waste that is disregarded. UCL does have incentives and is aware of their responsibility to be a sustainable business. However, as could be the case in this day and age, sustainability may be a buzz word within an organisation’s brief, so let’s take a look at a small selection of the realised actions and that are being taken by UCL in conjunction with Green UCL:

These concern campus wide initiatives, though within UCL individual departments are encouraged to develop their own sustainability strategies. An example of this can be the archaeology department which has listed their incentives and objectives: www.ucl.ac.uk/archaeology/about/facilities/green. My department, the Bartlett School of Graduate Studies, has their own incentives too and we are an environmentally conscious department. There is however always room for improvement and a closer monitoring of the air conditioning of un-occupied rooms within the campus could be pursued, as well as the provision of more cycle parking.

I shall round up my talk concerning sustainability and resources, I hope that this blog has been entertaining and possibly educational! I understand that I have approached this from the perspective of a local London citizen and have not widened the scope of the report to focus on the global issue. I would like to think that in this case the small differences can be achieved individually and create a direct impact on our lives whilst contributing to the greater cause of sustainable resource use, which needs our combined support as a global movement. I hope that during this climate week of 2014, myself and the audience of UCL can make a positive change towards sustainable resource use.

Climate and Land-Use Change: Managing a safe land-ing?

By ucqbdnr, on 6 March 2014

Blog by Darshini Ravindranath, UCL ISR PhD student

A combination of increasing scarcity of some natural resources, climate change and growth in global population to 9 billion by 2050 are creating conditions for a ‘perfect storm’.

The economic, social and ecological costs of climate change on vulnerable communities will be colossal. The impacts are depressingly palpable; rising sea levels, storm surges, declining groundwater levels, wildly unpredictable rainfall patterns, have led to large-scale depletion of ecosystem services. Climate change is set to challenge our existing notions of the utilisation and value attached to land. Simultaneously, increasing demand for food, fodder, fibre, timber and other biomass-based raw materials, is putting further pressure on these changing landscapes, leading to unsustainable land-use patterns.

Waiting for water, in a drought prone village in Southern IndiaTravelling through India for fieldwork related to my projects has allowed me to test my knowledge firsthand. I have found landowners and workers, tied to income and livelihood from land and monsoon to be extremely vulnerable to current climate variability and future climate change. Household concerns in these areas can often be linked with unsustainable use of land, water and biomass resources. The three issues are inter-linked in a typical ‘village ecosystem’, and a failure in one aspect will lead to complex knock-on effects on the others. For example, wind and water led soil erosion elicits land degradation, low water availability and low and non-sustainable biomass (food) production. A common practice I came upon in areas of low water availability was a fixation with excessive digging of bore-wells to source water for irrigation, which was leading to further ground-water decline. Somini Sengupta, who wrote an article on India’s groundwater woes for the New York Times, best captures this phenomenon.  She writes, ‘with India’s population soaring past 1 billion and with a driving need to boost agricultural production Indians are tapping their groundwater faster than nature can replenish it, so fast that they are hitting deposits formed at the time of the dinosaurs’. Similar headlines have emerged in Africa, where issues of land access mean a groundwater crisis looms despite recent discoveries of vast aquifers.

There is an urgent need to shift away from such inefficient farm practices, supply chains and diet choices towards long-term sustainability, profitability and health. Unfortunately, very little is being done towards this, especially in developing countries, where such problems are magnified due to heavy reliance on climate-dependent sectors.

The solution to these challenges can be met, at least in part, by sustaining land (or soil) quality and water supply. Most studies to date (with a few notable exceptions) have focused on one challenge or another (e.g. GHG mitigation, water provision, food security), but have not considered the multifarious cumulative effects that arise from the use of land, water and biomass. To solve these complex problems, it is critical to understand how diverse social and ecological drivers affect land systems.

The role of the state is critical. Changing land-use patterns have created a confusing palette for local governments. The focus must be to understand how best to improve resilience of communities and incorporate it into local land-use planning strategies in a synergistic manner. Utopian as these ideas may seem, it is essential to help the local population as well as local governments to better understand the value and potential of their land, prevent unsustainable land-use and therefore aid in the sustenance of robust livelihood systems. Feeding a population of 9 billion by 2050 requires concrete and coordinated evidence-based action.

Picture caption: ‘Waiting for water, in a drought prone village in Southern India’; Photo by: Darshini Ravindranath

 

 

“Half the work, twice the effect” – from a Chinese proverb to the cost-effective responses to the climate crisis

By ucftaww, on 6 March 2014

Blog by Wenjia Cai, UCL Lancet Commission

Right now I am sitting in my office in Beijing, where the air quality has been labeled by “hazardous” for almost a week. I am suffering from my sore throat, but I have nowhere to escape.

I believe this is the kind of frustration faced by many people, when they know climate change is threatening their health. The negative health impacts are happening, and are very likely to cost us a fortune.

Some simple but serious facts [1]-[3] are shown below. Of the world’s total population,

Wei 1

These are the most vulnerable people in the world. They are never the biggest contributors to the climate change crisis, but they are the ones being affected the most. Their health has been greatly threatened by droughts, floods, hunger, vector-borne diseases, home damages and health services interrupts.

Take hurricanes and storms for example. Hurricane Sandy hit the northeast coast of the United States, causing widespread damage and around 100 people died. However, in the developing world, such storms take a much greater toll. In 2007 and 2008, two very severe storms – Sidr and Nargis – caused the deaths of more than 10,000 and around 138,000 people in Bangladesh and Myanmar, respectively. In fact, statistics shows that only 5% of tropical cyclones occur in the north Indian Ocean, but they account for 95% of such casualties worldwide[4].

To respond to the climate crisis, greenhouse gas mitigation certainly aims for the root of the problem; yet some simple and low-cost adaptation measures can have instant effects.

Peter J. Webster, a professor of Earth and Atmospheric Sciences at the Georgia Institute of Technology, USA, advocates for the establishment of network between the forecasters of global weather and climate in the developed world, and research, governmental and non-governmental organizations in the less-developed world[4]. He estimated that such a network could produce 10-15-day forecasts for south and east Asia for a wide range of hydrometeorological hazards (including slow-rise monsoon floods, droughts and tropical cyclones), which will cost as little as $2~3 million a year, but save billions of dollars and thousands of lives.

On the basis of a World Bank report[5], one analysis concluded that about $ 40 was saved for every dollar invested in the regional forecasting and warning system. 

Fortunately, as commented by Webster, Bangladesh already benefited from such network. In 2007 and 2008, Bangladesh experienced three major floods. Each was forecast successfully ten days in advance and mitigation steps were taken.

This is one successful story of how we can quickly adapt to the coming climate crisis in a cost-effective way. The following table is excerpted from the major-task list of the “National Strategy of Climate Change Adaption” in China[6], published in November 2013, which may also provide us some hints on the other cost-effective options.

 

Major tasks to protect human health under climate change context in China
Improve the health and epidemic prevention system construction –strengthen disease prevention and control system–amend the indoor and working environmental standards–monitor drinking water hygiene conditions
Carry out monitoring and evaluation, as well as public information services –evaluate climate change impacts on the health of vulnerable people–establish the health-related weather monitoring and early warning networks, and public information service system
Strengthen the emergency system construction –develop and improve the health emergency plans for heat stroke, snow and ice, haze and other extreme weather and climate events

 

We are standing in the historic moment of addressing the climate crisis. Any delayed action may result in irreversible change and unaffordable costs. To make the right strategy, the traditional cost-effective analysis (CBA) can shed some light and help us choose within the large pool of adaptation and mitigation options. Obviously our choices will lean towards those options which don’t need high investment and will eventually pay for itself. In fact, there are many such options which can have the “twice the effect” with “half the work”. Our report will try to identify them. It’s also expected that, after considering the monetized health benefits, those options will become much more cost-effective, which can strengthen the will and catalyze the actions from politicians and investors.

Wenjia Cai is an assistant professor of Global Change Economics in Center for Earth System Sciences, Tsinghua University, Beijing, China. E-mail: wcai@tsinghua.edu.cn. The blog content only shows the views from the author, and cannot represent the opinions of any organizations or working groups.

References:
[1] World Bank, 2013. World Development Indicators 2013. http://data.worldbank.org/region/WLD (accessed Feb 25th, 2014)
[2] Da Silva J, 2013.. World Food Day 2013: Towards Sustainable Food Systems. http://www.fao.org//about/who-we-are/director-gen/faodg-opinionarticles/detail/en/c/203152/ (accessed Feb 25th, 2014)
[3] World Health Organization, 2013. 10 Facts on Climate Change and Health. http://www.who.int/features/factfiles/climate_change/facts/en/index5.html (accessed Feb 25th, 2014)
[4] Webster P, 2013. Improve weather forecasts for the developing world. Nature, 493: 17-19.
[5] Teisberg TJ, Weiher RF, 2009. Background Paper on the Benefits and Costs of Early Warning Systems for Major Natural Hazards. https://www.gfdrr.org/sites/gfdrr.org/files/New%20Folder/Teisberg_EWS.pdf (accessed Feb 25th, 2014)
[6] National Development and Reform Commission, 2013. China’s National Strategy of Climate Change Adaption. http://qhs.ndrc.gov.cn/gzdt/W020131213626583538862.pdf (accessed Feb 25th, 2014)

 

Are carbon sinks just another natural resource?

By ucqbsva, on 6 March 2014

Blog by Stijn Van Ewijk, PhD student, UCL ISR
Join in the conversation, follow Stijn on Twitter

The use of natural resources is intricately tied up with climate change. Most notably, the consumption of fossil fuels leads to carbon emissions which in turn cause climate change. Also, carbon sinks like forests regulate the climate by taking up carbon dioxide. Just like fossil fuels, these carbon sinks are increasingly being traded. However, the commodification of carbon sinks may be harmful and counterproductive.

Photo Climate Week Blog_SVEIn carbon markets, emissions in one place can be offset either by reducing emissions elsewhere, for instance by energy-efficiency measures, or by sequestering emissions, for instance through reforestation. Carbon dioxide sequestration through reforestation turns a forest into a commodity like many other natural resources. In practice, there are clear limits to carbon offsets: space is finite and mature forests cannot sequester additional carbon. Also, there are many competing land uses such as agriculture and infrastructure.

Commodification of carbon sinks typically serves a short-term economic agenda of efficiency maximization. Proponents argue that by allowing carbon and carbon sinks to be traded, both can be produced at locations where the conditions are optimal. For instance Brazil has more potential for cheap carbon sequestration while carbon intensive electricity generation plants are most efficiently located close to high electricity demand in Western Europe.

In addition to the limited global potential for offsets, there are some other disadvantages to the commodification of carbon sinks. Here are three of them.

  • Ethically, it can be undesirable to pay someone else to take care of your harmful carbon emissions since poorer nations may be forced into selling offsets at short term profits. On the long term, such nation could benefit more from other land uses.
  • Practically, it is hard to measure and regulate carbon offsets. For example, if a forest is about to be cut, does it count as an offset to ultimately not cut it? In some countries, this ambivalence has been exploited by “planning” increased deforestation.
  • Economically, in the long run, global carbon offsets may not be beneficial. Easy offsets in developing countries reduce the incentive for innovation in production and energy technology that can bring more efficient abatement in the long run.

Unfortunately, carbon offsets programs are often seen as a legitimate option for climate change mitigation. Influential sustainability indicators like the Ecological Footprint (EF) heavily emphasize carbon uptake by forests and strongly suggest that devoting land to forest is the primary means to managing climate change. Not only nations, also consumers offset their emissions too easily by for instance buying carbon offsets along with their plane tickets.

Currently, the Western world emits most carbon dioxide while having very limited potential for reforestation. With developing countries quickly catching up, especially China, it seems more attractive to seek for long-term solutions that bring down carbon emissions than to legitimate further emissions with reforestation projects. Clearly, carbon sinks should not be treated as just another natural resource.

Photo credit: Joshua Mayer under CC

Climate Change and Water – A Link to Engender Action?

By ucftpdr, on 5 March 2014

Blog by Paul Drummond, UCL ISR Researcher

As is well known, the climate system and hydrological cycle are inextricably linked. A warmer atmosphere melts water stored as ice at high latitudes and altitudes leading to sea level rise, which in turn allows more of the sun’s radiation to be absorbed, further accelerating warming. A warmer atmosphere is able to hold more moisture, increasing the frequency of heavy rainfall events in areas of previously moderate conditions, whilst shifting climatic zones may either reduce the intensity and timing (or even remove) heavy rainfall in areas that rely upon it. Water vapour itself, of course, is the most prevalent greenhouse gas.

Might it be this relationship that eventually spurs the world into action to reduce emissions to prevent the worst effects of a changing climate?

It certainly seems possible. The recent drought in California and flooding in the south of England have both bumped climate change to the top of the political agenda in the USA and UK once more. The current Californian drought has so far lasted for nearly three years, with 2013 the driest year since records began. Reservoir levels are dangerously low, with fires running rampant across the parched landscape. The large agricultural economy has been hit extremely hard. The situation in the south and particularly south-west of the UK couldn’t be more stark. England and Wales saw the most winter rainfall since 1766, bursting river banks and overcoming defences to flood over 6,500 homes and around 50,000 hectares of farmland.

These opposing sides of the same coin directly impact the lives and livelihoods of people living and working in these areas. Naturally, they seek reasons for why this is happening to them, who is at fault, and assurances that all efforts will be taken to make sure that it does not happen again.

At least some of blame has been focussed on government policy. In the UK, a lack of dredging of rivers and inadequate historic investment in flood defences has been blamed, along with long-term trends of removing upland vegetation for pasture and expanding settlements onto floodplains (or even reclaimed land in the case of the Somerset Levels). Of course, these aspects all combine to a greater or lesser extent to produce the damage experienced. But such factors may only control what happens to precipitation once it has occurred, and not the volume that must be dealt with.

This is where climate change enters the present discourse. Of course, an explicit link between these specific extreme events and climate change cannot be drawn, however a changing climate is likely to increase the frequency by which these events occur, and their intensity when they do. Despite this, both President Obama and David Cameron have voiced their opinions that climate change very much had a role to play in recent events (or in Cameron’s words, ‘very much suspects’). Such rhetoric, particularly in the UK from a government who it was felt were abandoning their ‘green’ credentials over time, reflects the extent to which climate change, and whether and how we should tackle it, has re-entered the public debate.

Of course, the USA and UK are not the only states in which water issues can be prevalent. In many countries, the absence or abundance of water is of paramount importance – a concern this is only likely to increase over time. However, it appears that developing nations are over-represented among this number. For example, small island states and low-lying countries such as Bangladesh are likely to be the first victims of a rising sea level, whilst the nations of the North Africa are likely to be among the first to feel extended periods of chronic water shortages, in parallel to expected rapid increases in population.

Unfortunately, these are not the nations that hold the key to meaningful global climate action, and they broadly do not have the financial resources to adapt to their new climate regimes if such action is not taken. It is the developed nations, along with the BRICS, which are pivotal. It is only when these countries decide that mitigation action is indeed necessary that significant steps will be taken, and this is unlikely to happen until climate change ceases to be an abstract concept in the mind of the general populous, but a real and present issue – with the most likely manifestation of this to be when previously extreme flood and drought events become increasingly normalised.

 

 

Climate Change and Water: Stores have a response in store

By zcfad21, on 5 March 2014

Blog by Simon Damkjaer, UCL ISR PhD student

Substantial increases in the combustion of fossil fuels over the 20th Century have led to a shifting climate, whose impacts on global water resources are best experienced through changes in the global hydrological cycle.  As part of a series of posts related to the 2013 UCL Energy and UCL ISR Climate Week, this blog post provides an overview of the most direct impacts of climate change on water resources and highlights my Doctoral Research on the importance of hydrological stores under a changing climate.

water_cycle

 

 

 

 

 

 

 

 

 

 

Ice sheets and glacier retreats
Climate change has been popularly coined “Global Warming”, and as the name itself suggests, means rising temperatures.  The first way, in which rising temperatures impact global water resources is through the transfer of freshwater from a state of solid snow and ice into water as a fluid state.  The ice-sheets of Greenland and Antarctica have been melting at alarming rates over the past decades [1], which has led to an increase in the mean rate of sea-level rise of 3.3 mm/year relative to a 20th Century average of 1.7 mm/year [2].  The effects of rising sea levels, simply put, will exacerbate the risk of storm surges at coastal areas.

Furthermore, snowfall over the polar ice-sheets is predicted to be reduced.  This, in combination with melting ice-sheets, will decrease the ice-sheets’ albedo effect – that is the amount of surface that deflects incoming solar irradiation.  A reduction in albedo effect risks triggering so-called feedback mechanisms, a system of circular loops, in which the warming of the global surface is enhanced, as less incoming heat is reflected due to a reduction in albedo which is caused by ice-sheet retreat due to rising temperatures and so forth.

Although alpine glaciers are currently melting at rates three times lower than that of ice-sheets, their impacts are still felt through effects on river flow, whose influence range from moderate in mid-latitude basins, to major influence in very dry basins.  The main issue related to an increase in glacier melt rate is that it causes a mismatch and unpredictability in the timing of dry period river flows, which has implications for access to water for agricultural purposes.

Precipitation, Evaporation and Transpiration alterations
The second way in which the global water cycle is affected by a shifting climate is experienced by the ability of hotter air to hold more water, which in return affects precipitation and evaporation rates.  The effects of increasing precipitation rates are felt at two extremes.  At the one end, rainfall events will be more extreme, short-term and variable, which will lead to increased run-off and thus higher flood risks.  At the other end, the intervals between these short-lived and heavy rainfall events, will get longer, which increases drought risks.
As temperatures rise, more water evaporates back into the air, which means less water availability for crops – “less crop per drop”.  Additionally, from a biological point of view, higher CO2 levels in the atmosphere, cause terrestrial plants to transpire less, thus lowering the amount of water they use – “less drop per crop”.    It, therefore, becomes evident that the impacts of climatic changes will have severe implications for food security in the future.

Uncertainty: a key challenge
The biggest challenge to the water resources community in modelling the impacts of a shifting climate on water resources is the extreme uncertainty associated with the exercise.  Apart, from the general well-known processes, how these shifts will affect water’s wider environmental interconnectedness still remains unclear.  In fact, the Intergovernmental Panel on Climate Change (IPCC) have taken a long time to properly include the effects of climate change on water resources into their annual reports, which is evidenced by only dedicating ten pages in their 4th Annual Report.  The reason for this has not been to downplay the importance of water, whose scarcity indeed was declared the second biggest global risk at the 2013 World Economic Forum, but simply because predicting the effects of climate change on water resources, continues to prove difficult, particularly on groundwater, where data is scarce.

The importance of stores
The effects of climate change on the global hydrological cycle may appear to only lead to situations of disadvantages.  However, studies from East Africa [3], which my Doctoral Research is grounded in, suggests that climatic effects in this part of the world, will cause an intensification in rainfall, which benefits groundwater recharge.  As research in the domain increases, so does the realisation that our understanding of groundwater resources remain limited.
Groundwater stores will become increasingly important in the future, as they possess a slower response-time to climatic shifts than that of surface water.  These resources, therefore, should be considered a key adaptation strategy to a shifting climate.  However, a history of legislative neglect of the resources, means that notions and understanding of sustainable management and utilisation of groundwater stores remain in their infancy.  Thus, it remains to be seen what the water the resources community has in store for the future.

[1] Rignot et al. (2011), Geophys. Res. Lett., vol. 38, L05503

[2] Nicholls and Casenave (2010), Science, vol. 328, 151 7-1520.

[3] Taylor et al. (2012) Nature Climate Change, Vol. 2, doi: 10.1038/nclimate1731