X Close

UCL Energy Institute Blog

Home

Blogs by staff & students of the UCL Energy Institute

Menu

Archive for the 'UCL Energy Institute students' Category

The changing face of architecture: Value difference

By Sofie L J Pelsmakers, on 8 March 2016

bridge-370539_1920

The built environment is still not equated with a diverse work force unlike the stakeholders with whom we work with and for. The annual survey of women in architecture released last month, makes for uneasy reading: deep-rooted inequalities and perceptions of gender differences that seem to affect women architects particularly badly. So on international women’s day I’d briefly like to share my journey as a woman in architecture practice, research and academia. In June 2015, I was shortlisted among 11 others by the RIBA as one of its ‘Role Models’, hopefully inspiring others that they too can forge a successful career in architecture. Since I shared my story as part of the Role Model Project, I noticed a positive change within myself and how I view myself. It is hard to explain, but I am more at ease with myself and more accepting of myself. I no longer fear of speaking out about my background (read about it here) or being a woman in a still mostly male dominated profession (more about that here). On reflection, this makes sense: sharing our stories so publicly received positive responses and made me realise that I was wrong to be afraid to speak out. I no longer feel as vulnerable sharing my personal journey: I have a voice and I want to use my voice on issues that matter to me in the hope that it inspires others and to draw out the value of differences. I also realised I should no longer be embarrassed about my background, but celebrate how far I have come despite the challenges along the way and to see and use this as a strength. (more…)

Ratcheting up the ambition level: Implementing deep decarbonisation pathways

By ucfaspy, on 4 December 2015

industry-970817_1920
There is a sense that COP21 provides for greater optimism than previous climate change conferences. And for good reason. Emission reduction pledges have been made by most, and the largest emitters are for the first time meaningfully engaged. Providing an important backdrop to this are the positive signs of an energy systems transition underway, as renewables investment continues to grow as technology costs fall, and the rate of fossil fuel use growth slows. (more…)

Financing Home Energy Efficiency: Lessons from the Green Deal and Needs for the Future

By ucqbldv, on 14 April 2015

Thermal Image of the HouseOn the 24th of March 2015, Mark Bayley, the Chief Executive and Petter Allison, the Commercial Director of the Green Deal Finance Company came to visit the UCL Energy Institute to present their inside knowledge on the start-up phase and the current development of the Green Deal. (more…)

More than a third of people would let their energy supplier turn off their heating

By Michael J Fell, on 23 March 2015

nest A sinister engineer in orange overalls and dark glasses looms from behind your fridge, hands raised, as if to strike… This is the scenario painted in the Daily Mail in a 2013 article on ‘direct load control’, or the possibility that third parties (‘outside forces’) such as energy suppliers could turn appliances in people’s home off and on to help keep the UK’s electricity system in balance.

(more…)

An experimental book swap

By Sofie L J Pelsmakers, on 23 January 2015

BOOK SWAP

The second book edition of The Environmental Design Pocketbook is out and it includes updated research, guidance and new legislation (such as the new Building Regulations and the new RIBA Plan of Work) alongside an extended retrofit chapter and new sections on the performance gap, and the influence of building maintenance and care and commissioning of buildings on their energy performance and how to achieve good building maintenance, the need for which I have also written about elsewhere.

In total, an additional 80 pages are included in the 2nd edition, making the book now almost 500 pages. As a result the decision was made to print on thinner FSc sourced paper and not thicker recycled paper as for edition 1 to minimise the impact of the additional pages. It also has a flexible back now which means that navigating the book and leaving it open is so much easier! Despite the increased production costs, we managed to keep the cost of the 2nd edition as the same as the first edition (£25) due to generous sponsorship from ECD architects. (more…)

Decision-Making in the Face of Uncertainty: Jim Watson Discusses The Future of UK Carbon Reductions at UCL

By ucqbmcl, on 17 December 2014

This December, Professor Jim Watson spoke at UCL on the topic of decision-making in the face of uncertainty. As the lead author of the UK Energy Research Centre (UKERC) synthesis reportUK Energy Strategies Under Uncertainty” Professor Watson discussed key technical, economic, political, and social uncertainties in the UK’s low carbon transition.

To date, the United Kingdom has met the targets set out in its carbon budgets, moving the country closer to its 2050 goal of an 80% reduction in carbon emissions compared to 1990 levels. But, existing uncertainties lead to questions regarding the achievability of future carbon budgets, as was shown with the controversy surrounding the 4th carbon budget (2023-27). When the budget was originally passed, it came with the condition that it should be reviewed. Only recently has the government accepted the recommendation from the Committee on Climate Change (CCC) that the budget should not be relaxed.

In his talk Professor Watson discussed uncertainties facing the future of the UK low carbon transition and the impacts of these uncertainties on decision-making. His presentation was largely based on a recent UKERC report that not only focused on current uncertainties but also provided a list of steps that could be taken to either reduce the uncertainty itself or its potential impacts.

Note: UCL Energy Institute’s Steve Pye, Nagore Sabio, Neil Strachan, and UCL ISR’s Christophe McGlade also contributed to this report.

The presentation emphasized uncertainties in the future of electricity generation, heat, and transportation in a national low carbon transition (slides found online here and video found here). But, according to Professor Watson, the report also covered topics like energy efficiency and impacts on ecosystem services. Overall, the UKERC’s work came to seven major conclusions (paraphrased below):

  1. Electricity decarbonisation is essential in the shorter term

Power sector decarbonisation by 2030 is essential if the UK is to meet carbon emissions targets and also minimise the costs of doing so. As this process will require large amounts of capital investment, the question of capital availability is important. While these is not necessarily a shortage of available capital in absolute terms, funding is not boundless and electricity decarbonisation investments must compete with other investment options. In turn, changes to policy frameworks, market structures and business models may be needed to attract that capital to the UK power sector.

  1. Limited existing technology options for large-scale, low-carbon electricity

There are currently a limited number of options for large-scale low carbon electricity generation technologies that can have a significant impact on electricity sector decarbonisation before 2030. Furthermore, all of these options face economic, technical and political challenges. According to the report, “given the financial resources required and the political tensions with some of these technologies, it will be tough for the government and industry to maintain momentum on all of them. It is therefore essential that any decisions to prioritise particular technologies are evidence based.”

  1. For heating and transport, electrification might (not) not be the best route

Much of the focus in decarbonizing transportation and heat has been placed on electrification. However, it is not yet clear if this is the best route for reducing emissions in these sectors. In turn, emphasis should be placed on continuing experimentation, demonstration and learning for each potential option. This learning process should include both technical and non-technical factors (e.g. consumer attitudes, business models, regulatory frameworks).

4. Energy efficiency can buy time

Should the deployment of low-carbon technologies struggle, energy efficiency can buy time and assist in meeting carbon goals. Efficiency projects are also an effective way to reduce consumers’ bills. Therefore, action to increase energy efficiency should be a short-term priority.

  1. Public engagement is essential

Engagement with people and communities is an essential component of the UK’s low carbon transition. Genuine engagement is needed so that public attitudes to energy system change – and not just to individual technologies – are taken into account in this transition. This engagement should also focus on how the shift to more sustainable energy systems should be organized and paid for. This approach could not only increase the chances of public support for change, it could also open up possibilities for compromise

6.   Delay is risky

There are significant risks to scaling back the UK’s low carbon ambitions, as some have advocated including not only prolonged reliance on a fossil fuel based energy system but also the resulting exposure of consumers and the UK economy to the potential impacts of high fossil fuel prices. However, under the current low carbon transition plan, natural resource issues – including controversies related to shale gas and biomass – are also important and may limit the extent to which they can be developed and used.

7. Implications for ecosystems is unclear

The transition to a low carbon energy system will have uncertain implications for ecosystems, both in the UK and globally. While this report presents evident suggesting that low carbon technologies will have fewer and/or less serious impacts than fossil fuels, it also states that the evidence base is weak and that significant further research is needed.

Among China’s top three energy sources, two are now renewable

By ucqbbl0, on 12 December 2014

While browsing online for information about electricity generation from renewable sources, I found a rather surprising “olds” reported by CleanTechnica back in January 2013, that China’s electricity produced from wind has already surpass the amount from nuclear, hence became the third largest source of electricity. This implies a seemingly impressive achievement: among top three energy sources in China, two of them are renewable, hydro and wind power. This is really remarkable, even compared with most developed economies in the world. Based on data provided by IEA, advanced economies including the US, the UK and Germany have their electricity mainly from coal, gas and nuclear. None of these sources is renewable!

boran liShould we applaud for this achievement of China, one of the biggest polluters in the world? Ehhh, probably we need to look deeper into this firstly.

One reason behind why wind could make its way into the top three is that the top two sources produce more than 93% electricity in China; more specifically, around 76% from coal and 17% from hydro (around 5% for wind in 2013). With this two big players in electricity generation, it is not that hard for other new growing technologies to join the team of top three, while no significant impact upon carbon emission could be realised during this process. Even though, the 17% figure for hydro itself also looks very impressive. But recently, there are many debate in China about if it is worthy to decarbonise by building dams, considering their significant by-product of damaging local ecosystems. The biggest dam in the world, Three Gorges Dam, was once a national treasure of the Chinese public and an important showcase of the powerful Chinese government, but if you search on the internet now, all you get are its damages to local weather, endangered species and reservoir area geological structure. Due to lack of rigorous planning and impact assessment before constructions of many government hydro-power projects, and countless resulted side effects, it is a growing consensus in China that all the dames will all be pulled down, sooner or later.

Similar problems occurred to wind energy development as well. For many local governments, one of the main objectives of developing wind energy is vanity of local officers. This leads to the issue that local government lacks incentives and therefore expertise to conduct detailed planning before building up wind power plants. In many cases, poor integration planning and inadequately developed electricity storage technologies raised the issue of electricity waste. In 2013 the amount of wasted electricity was estimated to be equivalent to the whole year usage of Beijing, this means only 2.5% of actual consumed electricity in China came from wind last year. Compared with the 5% production figure, half of them was thrown back into the air. Moreover, in some extreme cases, government officers only realised the wind power plant was not connected to the grid after the construction was finished.

We should not deny the great achievement that wind produced electricity in China soared 1580% from 5710GWh in 2007 to 95978GWh in 2012, which cannot be done without a strong centralised government. In less developed market economies like China, private businesses may take longer to respond to changes of market signals and advances of technologies, it is therefore government’s responsibility to plan and build the future. But with a strong Soviet style planning tradition, Chinese government still need time to learn how to give the freedom back to the market. Nowadays, even with generous subsidies provided by the central government, many green-tech businesses are complaining that they are physically crowded out by large scale wind and solar power plants invested by local governments. This conflict of crowding-out is set to be more intense in China than in well-developed democratic countries, considering China’s capitalist economic based and the single party bureaucratic (deliberately avoid using a strong word) upper structure. Given all the negative impacts from state initiated projects, it might be high time for government to learn when and where to take its muddy hands off, and let the market go.