X Close

UCL Energy Institute Blog

Home

Blogs by staff & students of the UCL Energy Institute

Menu

Archive for the 'Climate and Energy' Category

Delivering on Paris: how the UK responds to its climate obligations

Mx Maija H LPowell19 April 2018

Steve Pye, Francis Li, James Price

In a speech at the meeting of Commonwealth leaders in London on Tuesday, Claire Perry, the minister for Climate Change, announced that she would be seeking advice on strengthening UK climate targets, following publication in October this year of the Intergovernmental Panel on Climate Change (IPCC) Special Report on a 1.5°C warming limit.

This means that the Committee on Climate Change will revisit their analysis and recommendations on the implications of the Paris Agreement on the UK’s long term targets, first provided in 2016. In that report, they concluded that while ‘the Government has indicated it intends at some point to set a UK target for reducing domestic emissions to net zero,……… it is too early to do so now, but setting such a target should be kept under review.’It appears that a review is now imminent.

The CCC’s 2016 view, which was to maintain the status quo on ambition, was based on the need for more evidence on how the UK could achieve a net-zero target, and a prevailing view that the current 80% reduction framework was very ambitious and already represented a considerable challenge for government – thereby raising the question as to what could be gained from strengthening the target. Not a huge amount has changed in the last 18 months; for example, the challenge facing ministers to meet existing targets is evident, as demonstrated by the recent Clean Growth strategy failing to meet its own climate goals, and the policy gap identified by the CCC.

Shortly after the CCC gave its recommendations in 2016, we published a paper in Nature Energy (described in this Carbon Brief article) that explored this very question – what are the implications of the Paris Agreement for UK climate targets?We found that the UK energy system, which accounts for the vast majority of CO2emissions, would need to be carbon emissions free at some point in the 2045 to 2070 period under a 2°C target. The analysis also produced more stringent reduction trajectories than currently set out under the UK carbon budgets.

Making a more equitable contribution to global efforts, and pushing well below 2°C, both aspects which are embodied in the Paris Agreement, would require net-zero emissions by 2045. This means no oil use in our cars, an electricity system based wholly on renewables and nuclear, our homes heated by low carbon electricity or heat but not gas, and industry adopting new low carbon processes and energy.

The target year of 2045 is based on a UK allocated budget of 4 GtCO2from now until eternity. UK emissions are at around 420 MtCO2(including international transport), meaning that if current levels persisted, it would be around 10 years before this budget was used up.

Pursuing an even more ambitious 1.5°C target (which we did not consider in our 2017 paper) would mean leaving the UK with a 30% lower carbon budget than our most stringent 4 GtCO2case. Meeting this target would require truly heroic assumptions that may be difficult to envisage, given that the 2045 net-zero target in our study implied incredibly fast annual emission reductions of 9 %/year and eye-watering economic costs. Furthermore, we used optimistic assumptions on the role of CCS (and negative emissions technologies) which in effect increased the effective headroom available in the UK budget from 4 GtCO2 to 10 GtCO2. Furthermore, we assumed that long term transition policies could be put in place and maintained over time, unaffected by economic crises, social upheavals, or political backsliding on prior commitments, which may be viewed as ambitious assumptions indeed.

The fact that our analysis raised serious questions as to the feasibility of pursuing this type of goal means that proper scrutiny of higher long term ambition is crucial, in view of the science and with a full view of the possible options. And this reconsideration is timely; our paper made the point that to put in place the necessary policies now, we needed to be clear as to the longer term goal. Too little action or poor infrastructure choices in the near term puts climate goals at risk, without the time to take corrective action.

Reflecting on our paper, there are some important avenues for future investigation, to explore what longer term targets are needed, and the types of policies required to achieve them. Firstly, for those pathways that were feasible in our study, they typically were found to have had a significant contribution from CCS. The lack of serious policy consideration on CCS means that such pathways must be revisited, and alternatives explored that are more robust to any failure to scale future CCS deployment. A recent paper in Nature Climate Change offers some ideas in this direction.

Secondly, there needs to be more focus on the multiple options that might be available for reducing our end-use energy demand. This means testing options that are often omitted from models e.g. taxes on specific travel demands e.g. aviation, changes to urban planning that impact how we use energy, and the impact of technology on energy services e.g. mobility. And crucially, we need stronger scrutiny of the demand drivers going into models, which left unquestioned can lock us into higher emitting pathways but which may be fundamentally flawed. Another recent paper urges research in this direction.

Thirdly, and in view of the above, we urge efforts to take stock on what targets need to be achieved by when, in line with the spirit of the Paris Agreement. That means a UK net-zero target with a specific date attached, with this point in time reflecting the key principles of equity, the UK’s capacity to act as a leading G7 economy, and the science. The strength of such a target will be that it will serve to reduce ambiguity regarding when sectors need to achieve zero emissions, providing clarity to policy makers and investors.

As the CCC considers their advice towards the end of this year, there is a real opportunity to position the UK as a global leader in the debate on what actions countries can take to meet the extraordinary challenge agreed in Paris at COP21. Whatever is proposed, it will need to be followed up by a radical set of implementation policies to move beyond weighing our options and placing the UK firmly onto a net-zero pathway.

The power of reducing energy consumption is in our hands

CatalinaSpataru19 June 2015

Setting a thermostat to cool in the summer.

Setting a thermostat to cool in the summer.

According to the Pew Research Center’s Forum on Religion & Public Life, there are 5.8 billion religiously affiliated adults and children around the globe, which represents 84% of the 2010 world population of 6.9 billion. From this 32% of the world’s population represent Christians. The demographic study was based on an analysis of more than 2,500 census, surveys and population registers.

Also, Pew Research Center has published results on % who believe there is solid evidence that Earth is getting warmer  (more…)

90% of electricity is consumed by buildings – Case study in HK and what the government did

Kin HPoon7 March 2014

Blog by Ivan Poon, UCL-Energy student

Probably we already knew that buildings account for a significant amount of global energy (~40%) and around 33% of the greenhouse gas (GHG) emission. However, building accounts for an even higher proportion of carbon emission in some urbanized cities, such as Hong Kong.

In September of every year, the Electrical and Mechanical Services Department (EMSD) of HKSAR Government publishes the report on Hong Kong Energy End-use and from the latest report in 2013, it is noted that the electricity consumption by buildings kept rising and accounts for 92% of the citywide electricity consumption. *(please note that the report only shows the city’s energy consumption of 2 years ago, i.e. it is the energy consumption of 2011 in 2013 report)

electricity consumption in HK - 2011

Fig. 1 Electricity consumption in HK in 2001 and 2011 (source: EMSD – HKSAR Government)

The summary of the building energy consumption in Hong Kong in 2011 are as follow:
•    The energy consumption of the whole city kept rising for 4 consecutive years and it is highest among these 10 years (278,618 TJ);
•    Buildings consume for 92% of the total electricity used, while it is only 86% in 2001;
•    The energy consumption in HK by commercial buildings to residential buildings is in a portion of around 2.5:1; and
•    If taking other use of fossil fuels into account, buildings in HK consumes 63% of the total energy use, while it is 54% in 2001.
As Hong Kong is a city without much industrial activities, it is understandable that why buildings take such a large portion of energy in the city. But it is still unforgivable that the energy consumption kept rising in the recent decade, when “sustainable development” is emphasized.

The Government is actually aware of such situation and therefore, they are trying to implement different policies in recent years, while the Building Energy Efficiency Ordinance (BEEO) is the key policy among all.
Building Energy Efficiency Ordinance (BEEO)
Building energy related policies in my opinion can be mainly categorized in 3 groups:
•    Overview roadmaps and targets (Sustainable Blueprint in Singapore)
•    Compliance regulations and building energy codes (Building Energy Efficiency Ordinance in Hong Kong)
•    Market instruments (Carbon Cap-and-trade policy in Tokyo)
Building Energy Efficiency Ordinance (BEEO in short) belongs to the second category and was just being implemented since 21st September 2012 in Hong Kong. It mainly comprises of 2 parts:
1.    Building Energy Code (BEC) – for those newly constructed commercial buildings or they would like to undergo a major retrofit, they have to comply with the requirements as stated in BEC. For example, offices can only have 15 W/m2 lighting power density at maximum.
2.    Energy Audit Code (EAC) – Owners of existing commercial buildings have to hire Registered Energy Assessors (REA) to perform energy audits for their buildings. They are performed in stages according to the age of buildings (Newest buildings are the 1st batch and they must do the audit in the 1st year after the policy is implemented). A certificate (only showing that you complied with the ordinance, not ratings on the certificate) will be issued afterwards and is valid for 10 years.

Why commercial buildings?
1.    The energy consumption in HK by commercial buildings to residential buildings is in a portion of 2.5:1, so larger energy saving potential for commercial buildings.
2.    The ownership and tenancy of commercial buildings is easier to deal with.
What is the significance of this policy?
1.    The maximum requirements for BEC would restrain the energy consumption by the new commercial buildings.
2.    EAC would provide valuable detailed energy data to the government for their policy intervention.
Challenges
1.    There are many old buildings in HK, as the EAC requires them to fill in detailed information, e.g. efficiency of the chillers, they might not have the records for that.

Now you may argue that the Building Energy Efficiency Ordinance (BEEO) is just being enforced from 21 September 2012 and BEAM Plus (the building environment assessment system, just like LEED) is getting more popular over the years, the energy consumption will begin to drop starting from 2012 or 2013. However, the existing building owners just have to provide their energy data according to BEEO and only the BEAM Plus for new buildings is getting popular due to the GFA concession policy, there should be more to do to reduce the energy consumption by existing buildings.

In long term, the Government can consider the followings:
•    Setting up a comprehensive green building campaign (e.g. Greener Greater Buildings Plan in New York City) and strict targets of energy reduction; and
•    Investigate the possibility in the implementation of a Carbon Cap-and-Trade System for the buildings, just like what the Tokyo Metropolitan Government did.

For the whole report of Hong Kong Energy End-use Data 2013, please visit the following website:
http://www.emsd.gov.hk/emsd/e_download/pee/HKEEUD2013.pdf
More information of BEEO is available by this website:
http://www.beeo.emsd.gov.hk/en/mibec_beeo.html

Video: Climate Change and Resource Use

Seyed MehdiMohaghegh7 March 2014

Climate Week video

 

 

 

 

 

 

At first glance, climate change is all about energy consumption and associated carbon emissions. Other resources than energy greatly matter too however. The use of natural resources leads to carbon emissions and many mitigation options like renewables depend on scarce resources like critical metals. In this video, Professor Paul Ekins, Director of the Institute for Sustainable Resources, and Professor Raimund Bleischwitz, BHP Billiton Chair in Sustainable Global Resources, explain the relation between different resources and global warming. Also, PhD researchers at the UCL Institute for Sustainable Resources provide insight in the role of energy, water, land and fossil fuels in the changing climate.

Watch the video by Stijn Van Ewijk and Seyed Medhi Mohaghegh, UCL ISR PhD students

Everything we do contributes to climate change

CarolynBehar7 March 2014

Blog by Carrie Behar, UCL-Energy PhD student
Get invovled in the conversation: Follow Carrie on Twitter – @LoLoStudent

Being asked to prepare a blog post for this year’s climate week got me thinking about how my work relates to climate change. To me, climate change is a huge and scary thing. It feels totally beyond my control, and if I do spend too much time thinking about the magnitude of the problem, I feel like giving up altogether and running away to aDream 3 desert island. The problem is, if we all did that, it would be only a matter of time before all the desert islands got full, that is if they weren’t first subsumed by rising sea levels.

Another problem with desert islands is their lack of high speed broadband, lively high streets with shops and bars, and comfortable spaces where I can sit and think and read and write, occasionally engaging in stimulating conversations with my colleagues, or grabbing a bite to eat in a local café. Furthermore, much as I like the idea of spending my evenings lying in a hammock under the stars, I also thoroughly enjoy my own personal routine of waking up in a warm and comfy bed on a Saturday morning and then wasting an hour or so playing on Twitter whilst building up the motivation to face the gym!

So here I am, and here are lots of us, living our lives very much within the constraints of the culture within which we were born and raised. We live in heated (or cooled) houses and flats, eat food imported from all over the world, travel longer distances that we feel comfortable with to get to work or school, and spend much of our time indoors, usually connected to some kind of electronic device. And allReality 3 of these activities, consume energy – lots of energy. This energy that we rely on to live our ordinary lives is generated from a combination of burning of fossil fuels and utilising renewable resources such as wind and solar. And it is the burning of fossil fuels that is accelerating the changes we are seeing in our climate, as explained here.

 

What can energy demand research do to help?

Ultimately, the reason I am here, doing my PhD and writing this blog is because, recognising the contribution of energy consumption in buildings to changes in the world’s climate, the UK Research Councils felt it was worth providing funding for PhD research in both energy supply and use. But what am I actually doing and what do I hope to achieve? And can I really make a difference with my tiny contribution to the vast pyramid of knowledge?

At first glance, looking at how people are adapting to living in new low-energy homes with ‘whole house’ ventilation systems is a long way away from working on ‘solving’ climate change (more about my work here). However, if we understand that energy used in our 27 million homes accounts for nearly a third of total UK energy use, it’s at least clear that there is a strong need to reduce the energy consumption of both new and existing dwellings.

As around 60% of domestic energy use can be attributed to space heating, an effective way of achieving this reduction is to seal up gaps and cracks around windows, doors, floors and roofs to make our homes more airtight and less draughty, thereby keeping the heat in. However, we cannot completely seal up homes, because the activities we carry out inside them generate a range of pollutants which need to be removed. Ventilation is the controlled provision of clean air and the removal of stale air, which typically contains CO2 exhaled by people, water vapour from showering and washing, and smells generated when cooking. These byproducts of everPyramid 3yday domestic activities must be taken out to keep us healthy and prevent nasty things like mould developing.

Why technologies alone won’t fix the problem

Several technical solutions have been proposed to deal with the problem of ensuring sufficient ventilation without wasting any heat energy. These are explained in detail in this Energy Saving Trust publication. The idea is that, during winter, air is only permitted to enter and leave through designated and controlled openings, such as trickle vents and ceiling extracts. The house stays toasty and warm, while harmful  pollutants are removed and replaced by fresh air from outside. Problem solved, right?

Unfortunately not. Although these systems have potential, the deployment of technology is not in itself a guarantee of success. Monitoring of energy consumption at completed homes which incorporate these systems repeatedly highlights the large gap between predicted and actual energy consumption. There are a number of factors that contribute to this performance gap and the way that people use and interact with their homes is but one of them. That’s not to say that people are necessarily doing something wrong; rather, there are a wide range of normal activities that we carry out which can impact on energy use. For example, do we regularly cook for family and friends or eat out most nights? Do we prefer baths or showers? And how much time do we spend at home and at what temperatures do we feel most comfortable?actual bath 3

When recommending, specifying or installing a specific ventilation system, there is an inherent assumption that the people living in the house will act in a certain way to get the best use from their technology. The ‘model’ resident would leave the windows closed at all times when the heating is on, and rely on the ventilation to do its job. They would press the booster button each time they cook or shower, and only dry their clothes on the designated drying rack in the bathroom. Furthermore, they would make sure the extract vents were kept free of dust and grease and ensure that filters are changed regularly so that system performance does not deteriorate.

We won’t improve anything without understanding people

Unfortunately this assumption fails to acknowledge the day to day realities of life. Very few of us go about our existence worrying about the energy consequences of our every activity. If we did, we would get very little done and end up a bit mad (and start thinking about desert islands and the like…).

saucepan 3Although you cannot, rightly, force people to behave in a certain way, I would like it to become easier for people to do the most efficient thing, and in the case of domestic ventilation I think we have a long way to go before this is the case. Over the course of my studies I have met people who are largely unaware of the presence of controlled ventilation in their home, let alone knowing what to do with it, as well as  a family with a broken booster button who had no option but to open the window to let out cooking fumes.

Completely unsurprisingly, I am yet to meet someone who is able to explain to me correctly what MVHR, MEV or PSV are and how they work (and if you didn’t get round to reading the Energy Saving Trust publication I mentioned earlier then you probably don’t either!). The residents I have spoken to have never been told that there are filters that need changing, nor that they could save energy and money by keeping the windows closed when the heating’s on. The reality is that we open the windows and forget to close them, dry clothes on radiators, put off housework until it is absolutely necessary and we find a way round things like broken switches that doesn’t involve us calling a handyman.technology 3

And this is why, I believe, the problem of climate change is so hard to resolve. Society seems to be driven by a desire to invent technical solutions  to fix problems. But when we break down the issue into smaller and smaller chunks, for example individual houses and their ventilation systems, we are always left with people and organisations interacting with material things  in unexpected ways and not just the objects themselves.  And it may just be that rather than relentlessly, modelling, simulating and optimising how technologies work, the solutions to global problems could lie in understanding how the minutiae of day-to-day life shape our energy use.

Carrie Behar

 

 

Keeping people on the agenda

FayeWade7 March 2014

In our post for Climate Week 2013, the UCL Energy Social Sciences Group highlighted the importance of understanding the way that people view energy. What people do can be difficult to predict; as we pointed out this can limit the success of strategies aimed at reducing energy use. In our previous post, we commented on the recent launch of the Government’s Green Deal, a programme aimed at improving the efficiency of dwellings by providing a loan for householders to invest in interventions like insulation and more efficient space heating technologies. This loan is then repaid through the energy savings delivered by the intervention. At that time, there were concerns about low uptake of the scheme. One year on we find ourselves with a scheme that has, so far, struggled to take off, prompting widespread media coverage and headlines like: “How the Green Deal turned into the green disaster”[1].

How did the Green Deal turn into the green disaster? There are issues with the complexity of the process (a multi-stage procedure, requiring, for example, an initial assessment before any works can take place), the financing mechanism used, skepticism around expected savings and general awareness of the scheme. Arguably, one of the key challenges is the sheer number of different stakeholders involved in the process. We have the homeowner, the person performing assessment, the tradesmen involved in installing the interventions, the organisations financing the scheme and those involved in the supply chain, all of whom have to be suitably aware of, and able to play their part in, the Green Deal. Coordinating so many individuals and organisations is not an easy task. Somewhere in this complex network, something appears to have come unstuck. To really understand the barriers to uptake of the Green Deal, we need to take a holistic approach to investigating the people and groups who are involved at all levels. Drawing on theories from the social sciences can be an effective way of unravelling the complex interactions between people, energy, organisations, policies and the physical fabric of the built environment.

For example, sociological theories position energy use as largely invisible[2] and instead focus on the routine practices that people carry out in their daily lives, some of which consume energy and resources (e.g. cooking a Sunday roast) and some of which may actually save energy (e.g. the daily activities of an insulation installer). In these theories, the context in which certain practices occur is very important. So, for example, what are the circumstances under which a homeowner would decide to make improvements to their home? Are they really interested in saving energy, or would they prefer that to be a happy side effect of installing a brand new kitchen or adding value to their property by building out the loft? And how do they feel about taking out a loan to finance these kind of ‘invisible’ improvements that the Green Deal offers? These are the kind of questions that social scientists ask, questions that need to be investigated much more if we are to boost the success of promising, but highly complex, programmes like the Green Deal.

The relevance of the Green Deal to a number of the topics relating to climate demonstrates the multi-dimensional nature of these issues. Five topics were outlined for the content of these Climate Week blogs; these are the relationship between climate and health, poverty eradication, water, resources and energy. Arguably, the Green Deal has implications for all of these topics within the context of buildings. For example, the quality of our buildings and thus the energy, and money, it takes to be comfortable in them has a direct impact on the health and poverty levels of their occupants. So, not only is the lack of Green Deal uptake a problem involving multiple individuals, it also impacts on several elements of the climate problem. Consequently, it’s important to understand this problem, and so many others within the energy field, from a range of different perspectives.

The UCL Energy Social Sciences Group recognise this and have built an expanding group of multi-disciplinary individuals, all looking at energy problems from a variety of disciplines and perspectives. In the last year we have continued to build on the strengths of the Social Sciences Group, including hosting a regular reading group and welcoming a range of external speakers from the wider UCL community and beyond. These events have covered a range of topics, varying from studies of the tradesmen installing external wall insulation to transition management in low-carbon neighbourhoods. We are currently planning a conference aimed at bringing together the different perspectives of social sciences and energy that are being applied across UCL. If you’d like to find out more about the group, visit the UCL-Energy Social Sciences Group website, or email ucl.energy.ssg@gmail.com.

 

 

 

 

 

 

 

 



[2] DECC & CHATTERTON, T. 2011. An introduction to Thinking about ‘Energy Behaviour’; a Multi Model Approach. In: CHANGE, D. O. E. A. C. (ed.). DECC.

 

 

Climate Crisis: Emergency Actions to Protect Human Health

EllieForward3 March 2014

Blog by Nick Watts, Head of Project, UCL-Lancet Commission
Join the conversation: Follow Nick on Twitter

“Above all, be visionary – this Commission is designing integrated solutions to what has been described as the biggest global health threat of the 21st century”. These were the parting words of Richard Horton – the editor of The Lancet – to the Commissioners at a recent London meeting.

LancetThe 2014 UCL-Lancet Commission on Climate Change and Health is an ambitious initiative bringing together senior international climate scientists, economists, energy experts, and health professionals to present mitigation and adaptation policies necessary to protect human health from climate change, and promote sustainable development. The Commission is truly interdisciplinary and international, consisting a tripartite collaboration between University College London, Tsinghua University, and the Stockholm Resilience Centre. Within UCL, the Commission is working across the Institute of Global Health, the Energy Institute, the Institute for Sustainable Resources, the Geography Department, and the Department of Science, Technology, Engineering and Public Policy. Presenting its work in February 2015, the commission will ultimately aim to be policy-relevant, taking an academic ‘honest broker’ approach where experts in areas relating to climate change use their knowledge to integrate scientific knowledge more cohesively with policy.

Published in the Lancet – arguably the most influential medical journal in the world – the Commission understands climate change as a ‘health emergency’. Its work is divided in to five working groups, each tackling a particular part of the policy response to this crisis, and tasked with producing a chapter for the final report. Over the next week, a post from each of the working groups should give you a better idea of what they’ve got planned. But in the meantime, here’s a brief summary of what they’re looking at:

1)     WG1 will set the stage by laying out the latest evidence in climate science and the impacts these global environmental changes are having on human wellbeing. The group will attempt to employ innovative methods to demonstrate how global patterns of vulnerability shift with environmental and demographic changes;

2)     In light of the scientific update above, section 2 will examine the most effective solutions to improve resilience in the most vulnerable communities. One area of particular interest being explored is with regards to identifying the limits to adaptation;

3)     Experts in energy and climate change mitigation will explore the emergency technical solutions available, prioritising them according to their cost-effectiveness, time to implementation, and feasibility. In particular, Commissioners in WG3 will explore the ‘epidemiology of energy policy’, looking at what happens when large-scale policy changes are implemented in practice.

4)     The fourth component of the report will discuss a broad range of alternatives to financing the defined technical solutions. They’re looking at a broad range of responses, including international trade, taxation (regressive and progressive), capital and bond markets, and investment incentives and penalties.

5)     The final section will bring together the above policy options, providing insight in to the political mechanisms necessary to trigger a cascade of technical and financial action.

The task ahead of the UCL-Lancet Commission is indeed ambitious, with more than 60 academics and experts from around the world working on it right up until early 2015. The key findings of our work will take some time to come to light, but if the last 12 months are anything to go by, the results of the Commission will most certainly “be visionary”.

Climate Week 2014

EllieForward19 February 2014

From 3-9 March 2014, UCL Energy Institute and UCL Institute for Sustainable Resources staff and students will be blogging here daily to celebrate Climate Week 2014.

Topics will include:

  • Climate and health
  • Climate and poverty eradication
  • Climate and water
  • Climate and resources
  • Climate and energy

We will also be publishing a series of blog posts, focussing on themes relating to the newly launched 2014 UCL-Lancet Commission on Climate Change and Health. The commission is an ambitious initiative bringing together senior international climate scientists, economists, energy experts, and health professionals to present mitigation and adaptation policies necessary to protect human health from climate change, and promote sustainable development. The Commission is truly interdisciplinary and international, consisting a tripartite collaboration between University College London, Tsinghua University, and the Stockholm Resilience Centre.

Topics will include:

  • Climate Science & Health Impacts
  • Resilience & Adaptation
  • Energy & Technical Solutions
  • Finance & Economics
  • Political Mechanisms

Follow us on Twitter for regular updates on new blogs:

UCL Energy Institute

UCL Institute for Sustainable Resources