X Close

ASPIRES research: project blog

Home

Studying the science and career aspirations of 10-23 year olds.

Menu

ASPIRES 2 gives evidence on work experience to the Youth Select Committee

By qtnvacl, on 10 July 2018

ASPIRES 2 Research Associate Dr Julie Moote has given expert evidence to an inquiry on the barriers to work experience. Dr Moote provided evidence from the ASPIRES 2 project which shows that the provision of work experience opportunities in England is patterned by social inequalities (see here for more information).

The inquiry comes at a time when more than half a million young people are unemployed, and with a recent YouGov poll highlighting that 58 per cent of all 11-18 year olds cite a lack of work experience as a barrier to future employment.

To find out more about the evidence visit the Youth Select Committee website.

UPDATE 14th November 2018 – A report of the evidence has now been published; Realising the potential of Work Experience.

Improving science participation: Five evidence-based recommendations for policy-makers and funders

By Rebekah Hayes, on 30 May 2018

Improving science participationThis post was originally written for the IOE blog on behalf of our sister project Enterprising Science. You can find more information about Enterprising Science on the IOE website.

To continue with science post-16, young people must achieve certain levels of understanding and attainment. Crucially, they must also feel that science is a good ‘fit’ for them – that science is ‘for me’.

Drawing on more than five years of research conducted by the Enterprising Science project in classrooms and out-of-school settings, the team have developed five key recommendations for policy-makers and funders who want to broaden and increase young people’s engagement with science. These recommendations are set out in Improving Science Participation, a new publication launched earlier this month at the government’s Department for Business, Energy and Industrial Strategy (BEIS).

The recommendations focus on the concept of science capital. Research has shown that science capital can help explain variable rates of science engagement and participation across formal and informal settings. It can also help to frame interventions designed to support engagement.

The concept of science capital originally emerged from the ASPIRES project, a longitudinal study tracking young people’s science and career aspirations. Analyses from ASPIRES show that the more science capital young people have, the more likely they are to aspire to study science in the future.

Young people with lower levels of science capital tend not to see themselves as ‘sciencey’ and are therefore less likely to want to continue with science. Students who do not see science as meaningful and relevant to them find it more difficult to engage with the subject.

With this in mind, Enterprising Science has published the following recommendations for improving science engagement and participation:

  1. Ensure that, within your context, young people’s encounters with science (in and beyond the classroom) are based on the science capital educational approach.

This approach links science with what matters to students, with their daily lives and what matters to them. It:

  • values activities outside school and connects science with the students’ own community;
  • tweaks lesson plans to help students see how science relates to their everyday lives and how it is useful in any job they may aspire to.

Qualitative and quantitative data show that over the course of a year, teachers who used thescience capital approach recorded marked improvements in their students’ attitudes to science, their aspirations for studying science at A-level, and a host of other benefits. While developed in secondary science classrooms, the principles underpinning the approach are applicable across a wide range of contexts, including primary schools as well as informal settings, such as science centres, museums and other organisations concerned with science engagement and communication.

  1. Focus on changing institutional settings and systems – rather than young people.

To date, many attempts to increase engagement with science, whether in the classroom or the informal sector, have focused on the young person, trying to identify ways they need to be fixed or changed. Instead, the science capital approach focuses on changing settings, or what is termed, the ‘field’. Field is a sociological concept that relates not only to a physical setting, but also encapsulates the range of social relations, expectations and opportunities in a given environment.

  1. Take the long view: move from one-off to more sustained approaches.

Engaging more – and more diverse – young people with science is not an easy goal and requires more than a simple quick fix. Whether in schools, or informal settings, changing the field takes time and requires reflection.

  1. Use science capital survey tools appropriately.

Over five years, the Enterprising Science project has developed a survey tool instrument to measure young people’s science capital. The survey can be used to measure baselines or capture changes resulting from sustained, longer term interventions. Contact our team for copies of the student and/or adult science capital surveys and for advice on how to interpret the data: ioe.sciencecapital@ucl.ac.uk.

  1. Improve connectivity: create pathways, progression and partnerships.

Evidence shows that young people with high science capital report engaging with science across a range of settings. This means science capital is generated across a range of experiences. Greater connectivity within and between settings should help to build science capital and support science engagement. Research also shows that when individuals can connect their experiences across settings, engagement can flourish. See the report for our recommended action points on how to improve connectivity.

To find out more about these recommendations and to understand the research behind them, download the Improving Science Participation report.

For hard copies of the report please contact ioe.sciencecapital@ucl.ac.uk.

Photo: O. Usher (UCL) via Creative Commons

My PhD – Why are increasing numbers of students dropping Physics and MFL?

By qtnvacl, on 4 December 2017

By Sandra Takei

My PhD research investigates how students make choices in post-compulsory education. Subject choices made in post-compulsory schooling can have a profound impact on students’ future trajectories. Therefore, understanding the factors which influence subject choice can provide some insight into the declining participation in certain subjects and lower participation of certain groups.

For my thesis, I will focus on Physics and Modern Foreign Languages which have been identified as crisis subjects due to their declining uptake in post-compulsory schooling. Both have been identified as ‘facilitating subjects’ by Russell Group universities meaning that an A-level in either of these subjects are entry requirements for a high number of undergraduate programmes.

Few studies have examined the reasons for subject choice across multiple subject areas. Therefore, my study offers a comparative analysis that hopes to contribute to a new understanding of the issues which impact subject choice in each discipline. Language teachers have been concerned about the declining numbers taking A-level languages for some time but they have not received the same amount of attention as many of the science subjects such as physics. Comparing the reasons that students choose and drop these subjects can hopefully shed some light on whether these factors are subject specific or more general.

Although these subjects may share a several factors in common, such as their high status in the curriculum and declining participation, they have one major difference. While physics uptake has consistently been around 80% male for several decades, the uptake of languages has been skewed in the other direction. Roughly one third of A-level language students are male. I am particularly interested in what these gender differences can tell us about gender biases in subject choice generally and in these two subject areas. Hopefully, findings from this study can offer some useful recommendations for ways to make the curriculum more equitable and gender balanced.

I am currently in my second year of PhD studies. In addition to analysis of ASPIRES Year 13 survey and interview data related to subject choice, I will also be collecting additional qualitative data in secondary schools and sixth form colleges.

 

Sandra Takei is a Doctoral Researcher at the School of Education, Communication and Society, King’s College London

To find out more about Sandra’s research contact her via email.

 

Using Science Capital in the classroom

By qtnvacl, on 20 November 2017

The Science Capital Teaching Approach has now launched. Watch the video to find out about the approach.

Download a copy of the pack here.

The Science Capital Teaching Approach

By qtnvacl, on 16 October 2017

This month saw the launch of the Science Capital Teaching Approach, by our sister project Enterprising Science.

The approach is designed to support teachers in helping students find more meaning and relevance in science and, as a result, engage more with the subject.  The ideas for the approach were co-developed and trialled over four years between Enterprising Science researchers and 43 secondary science teachers in England.

Learn more about the pack, and download a copy, here.

Science Capital Conference: Book your tickets now

By qtnvacl, on 20 September 2017

The Science Capital research team at the UCL Institute of Education (IOE) will introduce the ‘Science Capital Teaching Approach’ at the Enterprising Science Teacher Conference in York on Friday 13 October 2017.

The conference is aimed at science teachers and educators who are keen to make their lessons more inclusive and engage more students with science. The Science Capital Teaching Approach is designed to support inclusion, building on students’ own personal interests and diverse experience.

To find out more and book your place click here.

“It’s kind of putting us in a difficult situation as students”: Responses to this year’s A Level Reforms

By qtnvacl, on 22 August 2017

Last week’s A level results day marked a number of milestones. Notably, this was the first year that students in England sat linear (also referred to as ‘tougher’) A levels; students studying one of the already-reformed A level subjects sat courses with little, or in most cases no, coursework and a final exam testing their knowledge of both years of the course rather than only the final year. There was plenty of analysis surrounding this – the headlines informed us that the reforms may have played a part in boys overtaking girls in top grades and that there was a drop in attainment for those subjects which have already been reformed, which includes all three sciences.

pexels-photo-289740Missing from much of this analysis was any student opinion of these reforms – what did the young people affected by these changes think of them? Last winter, as part of a data collection cycle for the ASPIRES 2 study[1], we interviewed 51 Year 13 students from around the country ahead of their A level exams. We asked these students, and some of their parents, about their schooling and future plans. Although the A level reforms were not a planned interview topic, 10 of these students, and a small number of their parents, shared their thoughts about the changes – mostly in response to a question about the challenges faced by young people today.

In this blogpost we share the emerging themes from these conversations, in order to shed light on student opinion of these part-introduced reforms. However, please note that due to the small sample size we recommend more in-depth research into this topic before drawing meaningful conclusions.

As the blog’s title (a quote from one of our students) indicates, many students felt pressured by the new reforms. The impact of this pressure upon mental health was not unexpected by some education experts; the “hastily reformed curriculum… created unnecessary stress and concern for pupils and teachers alike” said Rosamund McNeil from the National Union of Teachers ahead of last week’s results day.

The “memory game”

Some students disliked that the new linear courses required them to remember additional material for their A level exams. It’s “almost a memory game” said one student, Victoria1[2] (studying A level Maths, Politics, Design & Technology), who said that it felt like students were now “expected to recite something word for word… From two years ago, rather than just learn it, do it, learn it and then it would like stay there.” Worryingly, this was also cited as a reason to drop certain subjects, especially those seen as particularly content-based. For example, Louise (A level Psychology, Dance, Combined English) used the reforms as a justification for dropping Biology, her only STEM subject; “Um, I am pleased I dropped it, not necessarily because I didn’t enjoy it… there was just so much, but it was more, the fact was like how A levels are now structured – so I did all my AS stuff, did my AS exams, but for this year I’d have to remember everything from last year and then a whole new set of stuff.

Another student added that this requirement to remember additional information may lead to decreased enthusiasm for, or interest in, some subjects; “I think because [the AS and A2 exams] have been stuck together, people are just losing focus over time… that’s definitely an issue. Like I know it’s definitely hard to stay motivated with what you’re doing” said Neb (A level Physics, Maths, Further Maths).

No room for mistakes

The reforms also meant that some students felt pressure not to ‘make a mistake’ in choosing or taking their A level options, as many thought that the reforms made it more difficult to drop, change or retake options. Two students we spoke to raised concerns that the reforms limited their access to the possibility of retaking exams, which will now only be available once, instead of twice, a year; “I prefer the old system where we did the AS papers and they counted towards the A2 and you could retake them” said Preeti (A level Physics, Biology, Chemistry, Maths). “There’s just so much stuff to remember, there’s so much content and you just feel so pressured to remember everything, and you get stressed out… if [students] did want to like resit they’d have to redo the whole year, so it’s a lot” said Celina1 (A level Psychology, Sociology, History), who was also worried that the A level changes meant that no suitable past papers were available to her.

Reforms come with uncertainty

Being the first cohort to experience these reforms was also something that played on the minds of the students and parents we spoke to; “changing the A Levels to being linear, it’s kind of put my year group in a slightly difficult situation” said Bethany2 (A level English Literature, Sociology, Applied ICT). This was seen not only from the perspective of students but also teachers; “the teachers haven’t really taught this type of course before” said Bethany2, something echoed by one student’s parent who called the changes “disruptive” and thought this year’s students had been put at a disadvantage as the first year group to experience the changes.

 

Strikingly, most students who raised the topic of the new A level curriculum with us expressed views that this year’s reforms contributed to the exam pressure they were already under. Whether this is something which will lessen as the reforms continue to be rolled out over the coming years remains to be seen. In any case, insights from our research suggest that the government, schools and parents must be aware that young people are concerned that the new A level curriculum places unwelcome additional pressure on students.

 

By Emily MacLeod, Research Officer on the ASPIRES 2 Project


[1] This was the fifth round of interviews with this cohort. The ASPIRES teams first started speaking to these young people and their parents when they were 10. For more information about, and findings from, this longitudinal project please visit: ucl.ac.uk/ioe-aspires

[2] Pseudonyms are used throughout, to protect the identity of all interview participants.

The Home of Science Capital

By qtnvacl, on 11 July 2017

The concept of science capital was first developed by Professor Louise Archer and team during the first phase of the ASPIRES project.

Since then, the concept of science capital has been developed by ASPIRES/2’s sister project (also headed by Professor Louise Archer), Enterprising Science. Researchers working on Enterprising Science have created tools to measure science capital and developed strategies for building science capital in primary and secondary schools as well as informal learning institutions such as museums.

This year marked the start of a new science capital-related project, YESTEM, a joint UK-US project funded by Wellcome Trust and the National Science Foundation developing new models and tools in support of equitable pathways into STEM.

You can learn more about science capital at our home page.

Meet our Director

By qtnvacl, on 16 June 2017

As the new Karl Mannheim Professor of Sociology of Education our Director, Professor Louise Archer, took part in a Q&A session.

Read about Louise’s role, and what her proudest academic achievement is, here.

louise-archer

ASPIRES 2 Research featured in Education and Employers Research Report

By qtnvacl, on 20 May 2017

Following the 2016 International Conference on Employer Engagement in Education and Training, where ASPIRES 2 Research Associate Dr. Julie Moote presented project findings on careers education provision, our research has been published in ‘Research for Practice: Papers from the 2016 International Conference on Employer Engagement in Education and Training’, edited by Anthony Mann and Jordan Rehill.

Our contribution to the paper presents findings based on data collected in the first data collection cycle of ASPIRES 2, when students were in Year 11, aged 15-16. Alarmingly, our data showed that careers education provision in England is not just ‘patchy’, but ‘patterned’ in terms of existing social inequalities. Our findings therefore indicated that schools are not only failing to provide careers education to all, but that the students most in need of this support are the least likely to receive it.

Watch Dr. Moote’s presentation here.

The full paper can be found here.

The ASPIRES Project Spotlight on careers education provision can be accessed here.

In an-depth analysis of our findings on careers education can be found here.