X Close

ASPIRES research: project blog

Home

Studying the science and career aspirations of 10-23 year olds.

Menu

Archive for the 'Career Aspirations' Category

ASPIRES3 Report Launch & Installation Exhibition Video

By b.francis-hew, on 5 February 2024

Watch our ASPIRES3 Report Launch and Installation Exhibition Video

We are excited to present the ASPIRES3 Report Launch and Installation Exhibition video! Click the link below to download a HD version of the video.

https://we.tl/t-Sxw6QRwpmo

Check out the video here:

 

For more information on the ASPIRES project and to access the full reports, click the link on the sidebar, or use: https://www.ucl.ac.uk/ioe/departments-and-centres/departments/education-practice-and-society/aspires-research

ASPIRES: The ‘Lost Scientists’ Research Exhibition

By ASPIRES Research, on 23 January 2024

Blog: The ‘Lost Scientists’ Research Exhibition

In November 2023, the ASPIRES team launched the ‘ASPIRES3 Main report: Young people’s STEM trajectories, Age 10-22’ at The Royal Society in London. The report summarises the findings from the third phase of the ASPIRES research project, a fourteen-year, mixed methods investigation of the factors shaping young people’s trajectories into, through and out of STEM education (science, technology, engineering and mathematics).

Alongside the report launch the ASPIRES research team hosted a research exhibition representing ‘Lost Scientists’; young people with an interest and passion for STEM that have been unsupported and excluded by the education system and STEM fields. Their stories challenge dominant narratives which explain their absence from STEM as due to a lack of aspiration.

The ‘Lost Scientists’ exhibition was first developed by ASPIRES Director Prof Louise Archer, assisted by artist Maxi Himpe. It was informed by over 750 longitudinal interviews conducted by the ASPIRES project with young people from ages 10 to 21. The exhibition was inspired by the Wolfson Rooms at the Royal Society, where the exhibition was first held. The room resembles many other professional societies, typified by white marble busts and paintings of great scientists, mathematicians and engineers – who are overwhelmingly from white, male, privileged social backgrounds. Listen to an introduction to the exhibition here, read by Princess Emeanuwa.

At the centre of the exhibition was a life-cast bust, sculpted by Masters & Munn, representing one participant in the ASPIRES study: “Vanessa” (a pseudonym), a young, working-class Black woman (modelled by Happiness Emeanuwa). When we first interviewed Vanessa aged ten, she expressed a passion for science. However, as her interviews reveal, over time she came to find that her ‘love for it wasn’t enough.’ Listen to the words of Vanessa here, read by Happiness Emeanuwa.

A bust of ‘Vanessa’, representing a participant of the ASPIRES project. scientists Photo credit: Yolanda Hadjidemetriou.

Vanessa represents all the potential scientists lost to social exclusion. Accompanying Vanessa are empty frames, designed to evoke other lost scientists. The ‘thesis’ placed next to Vanessa echoes the other dissertations in the Wolfson rooms and others, to remind us of the contributions that she and others like her might have made. In this way, the exhibition challenges us to re-think assumptions about the underrepresentation of women, racially minoritized and working-class young people in STEM. It invites the excluded to claim their rightful presence in elite scientific spaces.

Vanessa’s bust and an empty frame displayed amongst those of white scientists Photo credit: Yolanda Hadjidemetriou.

The ‘Lost Scientists’ exhibition will be on public display from January to March 2024 when it is being hosted by the Geological Society. If you are interested in hosting the exhibition in the future, or have any questions about this work, please contact our research team on ioe.stemparticipationsocialjustice@ucl.ac.uk.

Why do some young people pursue chemistry degrees while others do not?

By ASPIRES Research, on 19 October 2022

This blog is based on findings published in Journal of Research in Science Teaching.

Throughout primary and secondary school, Preeti, a British South Asian young woman, consistently named chemistry as her favourite subject. She took the subject at A level, experienced good quality teaching and obtained top grades. She had positive attitudes to the subject and recognised its value – yet Preeti never considered pursuing chemistry at degree level – why not?

In recent years chemistry degree enrolments have been declining in England, despite increases in A Level chemistry enrolment1. Researchers from the ASPIRES 3 study analysed interviews and survey responses from over 520 young people who took A Level chemistry and either did, or did not, go on to study chemistry in higher education. The findings revealed how chemistry degree subject choices were highly relational – shaped not only by young people’s attitudes towards and experiences of chemistry, but also how it related to other options.

Young person pouring chemical into a measuring cylinder in a fume cupboard

Young person during a practical chemistry lesson.

The latest round of ASPIRES data was collected when our cohort was aged 20-22. In order to understand the factors shaping young people’s chemistry degree choices, researchers analysed open-ended survey responses from 506 young people aged 21-22 and 185 longitudinal interviews conducted with 18 young people (and their parents) who were tracked from age 10-22, all of whom had taken A level chemistry.

Of the 524 chemistry A Level students in the sample, just 83 (or 16%) went on to study for degrees in chemistry or chemistry-related degrees2.

One key finding was that degree subject choices are highly relational – that is, choosing a chemistry degree, or not, was not only based on young people’s views or experiences of chemistry but was formulated in relation to other options. This relational interpretation helped explain why even students with positive views and experiences of chemistry did not choose the subject at degree level.

A number of factors were identified as influencing young people’s degree choices including their experiences of school chemistry, feeling ‘(not) clever enough’ to continue with the subject, perceptions of chemistry jobs, associations of chemistry with masculinity, encouragement from others and experiences of chemistry outreach. Across all of these factors, social inequalities within and beyond chemistry affected the extent to which young people felt that a chemistry degree might be ‘for me’, producing unequal patterns of participation. For instance, common associations of chemistry with masculinity and cleverness put some young people off from continuing with the subject3. This was particularly apparent for young women, irrespective of their actual attainment.

The women who did pursue chemistry spoke about having to find ways to negotiate their own femininity in the masculine world of chemistry. Some young people also described how, despite enjoying chemistry, they had found a deeper, more meaningful connection with another subject, particularly where they had related resources (capital).

Professor Archer explained, “young people’s subject choice is a relational phenomenon. Their views on chemistry do not exist in silo but are shaped in relation to other options”.

The paper makes several suggestions to better support chemistry degree uptake. Some of these suggestions include supporting teachers and initiatives to help young people find and experience personal connections with chemistry and to build chemistry-related capital by offering encouragement, information on career routes, and access to high quality chemistry work experience and outreach.

The full paper can be accessed online.

Further reading

Archer, L., Francis, B., Moote, J., Watson, E., Henderson, M., Holmegaard, H., & MacLeod, E. (2022). Reasons for not/choosing chemistry: Why advanced level chemistry students in England do/not pursue chemistry undergraduate degrees. Journal of Research in Science Teaching, 1– 36. doi: 10.1002/tea.21822

  1. Chemistry participation figure are based on participation figures from Higher Education Statistics Agency (HESA) and Join Council for Qualifications (JCQ).
  2. In this case, chemistry degrees include chemistry, chemical engineering, and biochemistry.
  3. Archer, L., Moote, J., MacLeod, E., Francis, B., & DeWitt, J. (2020). ASPIRES 2: Young people’s science and career aspirations, age 10-19. London: UCL Institute of Education.

Changes in engineering are required to help more women participate

By ASPIRES Research, on 3 April 2020

A re-post from the IOE blog from February 2020.

Efforts should be made to transform the culture and practices of engineering to help more women participate.

The findings, which form part of our ASPIRES project, draw on survey data from more than 20,000 English pupils. We explore and compare the effects of gender, ethnicity, and cultural capital on science and engineering aspirations.

Gender was identified as the main background factor related to engineering aspirations. Students who identified as male reported significantly higher engineering aspirations than students identifying as female. In contrast, we found that science aspirations are influenced by a broader range of factors than just gender, including ethnicity and cultural capital.

The research reveals that efforts aimed at improving participation in engineering might more usefully focus on challenging the current culture and practices as this could influence student perceptions. We suggest changing this may be more useful than focusing on changing student aspirations directly.

Our team also found that school-level factors become more important for engineering aspirations compared to science aspirations. This could be because most students do not encounter engineering as a school subject. Only 1 in 7 students age 15-16 said they talked about engineering at school and the majority said they did not know what engineers do in their work.

The lack of exposure to engineering potentially makes the choice of an engineering degree or career more difficult for students compared to other STEM disciplines.

Our recommendations are:

  • Promoting a broader image of science and engineering to reflect the variety of careers available and to ensure that young people see science as ‘for me’;
  • Valuing the knowledge and lived experience of students and use this to broaden young people’s engagement with STEM;
  • Integrating engineering into the UK primary and secondary school curriculums to provide more opportunities for students;
  • Encouraging better career support, especially for women and girls considering engineering;
  • Broadening entry criteria for post-16 engineering routes.

Dr Julie Moote, Research Associate on the ASPIRES research projects and lead author of the paper, said: “Women, along with minority ethnic and low‐income communities remain underrepresented in engineering, despite a 30‐year history of research and equality legislation. While existing research gives insights into factors shaping retention and progression among university engineering students, comparatively less is known with respect to primary and secondary school students’ engineering aspirations and perceptions.

“Increasing and widening participation in engineering will require action on several fronts – not only increasing awareness of engineering careers but also reducing entry barriers and addressing inequalities within engineering itself.”

Read the full paper: ‘Comparing students’ engineering and science aspirations from age 10 to 16: Investigating the role of gender, ethnicity, cultural capital, and attitudinal factors

The Physics Problem

By qtnvacl, on 21 November 2018

By Dr Julie Moote

ASPIRES 2 Research Associate Dr Julie Moote recently spoke at the first workshop on high energy theory and gender at CERN. Threaded through the theoretical physics presentations by scientists were a series of gender talks by academics working across the field. This blog is a summary of Dr Moote’s presentation of findings from the ASPIRES 2 project; ‘Understanding Young Women’s STEM Aspirations: Exploring aspirations and attitudes between the ages of 10 and 19 in England’.

Background

Participation in post-compulsory physics remains low and unchanged, with the proportion of students studying physics at A level in the UK noticeably lower than those studying other sciences. Not only do a minority of students tend to see physics as ‘for me’, but the field of physics itself also shapes and normalises its elite status.

Beyond issues of the STEM skills gap, physics especially suffers from under-representation of women and minority groups. The Institute of Physics recently found that boys were four times more likely to progress to A-level having done triple science over additional science, a disparity that is reflected to a slightly lesser extent across the STEM disciplines. This imbalance carries through to physics-based employment; for example although the number of women in engineering in the UK is growing, women still only make up 11% of the UK engineering workforce.

Who is studying physics? The ASPIRES 2 Findings

The ASPIRES 2 project found that gender was the biggest difference between students taking physics A Level and those taking other sciences at A level. Physics students were also more likely to have high levels of cultural capital, be in the top set for science, have taken Triple Science and have family members working in science.

Students’ interest, enjoyment and aptitude is not enough to pursue physics post-16

The ‘gender problem’ in physics is a long-standing issue with women remaining under-represented despite decades of interventions. Therefore, physics remains a challenging education and career option for women. In fact, girls’ choices not to pursue post-16 physics are rational and strategic, especially as gender inequality within physics renders their success harder. Physics is highly effective at maintaining its elite status by discouraging ‘non traditional’ students and by ensuring that those students who do gain entry accept the status quo;

  • Firstly, the popular and prevalent, gendered notion of the ‘effortlessly clever physicist’ (e.g. see Carlone’s 2003 study) means that many young women think they are not ‘naturally’ clever enough to study physics further. In turn, this maintains physics’ status as the ‘hardest’ science. The fantasy of the ‘effortlessly clever physicist’ deters even highly able, interested young women from aspiring to post-18 physics education and careers. If the most highly attaining young women don’t see themselves as ‘clever enough’, who is?
  • Gatekeeping practices by schools work to block potential students from studying Physics and leads other students to self-exclude.
  • The separation of ‘real’ and school Physics gives the impression that ‘real’ Physics is only for the privileged few with the endurance to attain it (paper under review).
  • Young women with very high Science Capital are more likely to continue with Physics.

Recommendations

Significant change is needed and will only be achieved by transforming the field of Physics itself, rather than focusing on just changing the students (e.g. changing their aspirations and attitudes).

We strongly encourage those who work within the field of Physics to understand and challenge the existing (often taken-for-granted, everyday) ways that the subject reproduces inequality in participation. We see a real value in opening up the current excessively tight gatekeeping practices around entry to Physics A level. In particular, there is a need to disband notions of the ‘effortlessly clever’ physicist, and the notion that physics is ‘harder’ than other subjects – otherwise it will remain the preserve of just a small number of ‘exceptional’ students.

We propose changes to the way school science – and Physics in particular – is taught and experienced:

  • Differences in marking and grade severity across and between subjects should be eliminated.
  • Science and particularly physics should be taught in ways which better link to diverse students’ interests and lives. The Science Capital Teaching Approach has been shown to be helpful in this respect for increasing student engagement and participation in school science.
  • Physics (and indeed all) teachers should be better supported to understand the complex and sometimes hidden ways in which gendered, classed and racialized inequalities are reproduced through teaching.

For more information about the conference please visit CERN’s website. Following the event, CERN published a statement; CERN stands for diversity (which can be found here). For Dr Moote’s response to events at the conference please see here.

Further reading

We also recommend the following reading from the ASPIRES 2 project on the topic of physics and gender:

Additional papers under review. Sign up to receive project updates and publication news here.

Photo by Ramón Salinero on Unsplash.

My PhD – Why are increasing numbers of students dropping Physics and MFL?

By qtnvacl, on 4 December 2017

By Sandra Takei

My PhD research investigates how students make choices in post-compulsory education. Subject choices made in post-compulsory schooling can have a profound impact on students’ future trajectories. Therefore, understanding the factors which influence subject choice can provide some insight into the declining participation in certain subjects and lower participation of certain groups.

For my thesis, I will focus on Physics and Modern Foreign Languages which have been identified as crisis subjects due to their declining uptake in post-compulsory schooling. Both have been identified as ‘facilitating subjects’ by Russell Group universities meaning that an A-level in either of these subjects are entry requirements for a high number of undergraduate programmes.

Few studies have examined the reasons for subject choice across multiple subject areas. Therefore, my study offers a comparative analysis that hopes to contribute to a new understanding of the issues which impact subject choice in each discipline. Language teachers have been concerned about the declining numbers taking A-level languages for some time but they have not received the same amount of attention as many of the science subjects such as physics. Comparing the reasons that students choose and drop these subjects can hopefully shed some light on whether these factors are subject specific or more general.

Although these subjects may share a several factors in common, such as their high status in the curriculum and declining participation, they have one major difference. While physics uptake has consistently been around 80% male for several decades, the uptake of languages has been skewed in the other direction. Roughly one third of A-level language students are male. I am particularly interested in what these gender differences can tell us about gender biases in subject choice generally and in these two subject areas. Hopefully, findings from this study can offer some useful recommendations for ways to make the curriculum more equitable and gender balanced.

I am currently in my second year of PhD studies. In addition to analysis of ASPIRES Year 13 survey and interview data related to subject choice, I will also be collecting additional qualitative data in secondary schools and sixth form colleges.

 

Sandra Takei is a Doctoral Researcher at the School of Education, Communication and Society, King’s College London

To find out more about Sandra’s research contact her via email.

 

Are the white working-class an underrepresented group in science?

By qtnvacl, on 27 April 2017

By Lucy Yeomans, Doctoral Researcher on the ASPIRES 2 Project

Campaigns to improve diversity in science have often focussed on gender, with the lack of women participating in Physics being an ongoing concern within science education policy and practice. The work of ASPIRES has certainly made contributions to these debates, but also advocates a more intersectional approach to understand gendered, classed and racialised inequalities in science fields. Prior attainment has often been raised as the most reliable determinant of future science participation, however even when attainment has been taken into account students from lower socioeconomic backgrounds are less likely to pursue science pathways than their peers. The government’s recent concerns regarding white working-class underachievement in education as a whole begs the questions: are the white working-class an underrepresented group in science? If so, how can we make sense of why this might be? Is it because, as has been suggested in policy discourse, they suffer from a deficit of aspiration? Do they simply lack the academic attainment to enable their future success in science?

As a doctoral student working on the ASPIRES project my research aims to explore the sociocultural factors which may influence white working-class students’ future science participation. I am currently in the third year of my study, and having confirmed that white working-class students are indeed underrepresented in post-compulsory science fields, I have drawn on the ASPIRES longitudinal interview and survey data to investigate whether white working-class students are less likely to conceive science as being ‘for me’ and whether this is a consistent construct or something that changes over time.

_W9A7392_77f62

As in the wider ASPIRES project, my analysis so far has led me to reject the ‘deficit aspiration’ discourse and move beyond the rationale of prior attainment as the sole important determinant of future science participation. I am currently exploring white working-class participants’ (now aged 18) histories of engagement in science outside of school both to determine their levels of ‘science capital’ and to see how they differ, or correspond, with students from different sociocultural backgrounds, including looking for differences in gender. The next step will be to look at participants’ aspirations in science and how they may change when students leave primary school and progress through secondary school.

Access to participants’ interviews dating from their final year of primary school through to their final year of compulsory education has provided unparalleled insight into the evolving values and dispositions of these white working-class students as they navigate various changes in themselves and their environments. Through this research I expect to provide some improved understanding of how the changes, and the differential strategies used by students of different sociocultural backgrounds to manage these changes, inform white working-class students’ non-choice of science. Widened access to higher level science subjects is important for citizens operating in an increasingly sophisticated technological world, while a diverse scientific workforce is important for economic prosperity and for reasons of social justice. I hope that my research will provide some useful and important new insights for policy and practice.

Lucy Yeomans, Doctoral Researcher on the ASPIRES 2 Project


 

Failing to deliver? Exploring the current status of career education provision in England

By qtnvacl, on 17 January 2017

Our newest project paper, ‘Failing to deliver? Exploring the current status of career education provision in England’, has been published in the Research Papers in Education Journal with Taylor & Francis.

The paper, written by project Research Associate Dr. Julie Moote and project Director Professor Louise Archer, investigates students’ views on careers education provision and their satisfaction with this provision.

Careers Ed Abstract

The paper, which is open access, is available to read online and download here.

ASPIRES 2 in the Skills, Employment and Health Journal

By IOE Blog Editor, on 6 December 2016

SEH-Journal-Graph-300x231

Following a presentation by ASPIRES 2 Director Professor Louise Archer at Learning and Work’s Youth Employment Convention 2016 on 5th December, we wrote an article for the Skills, Employment and Health Journal.

The piece sets out our project findings in the context of social mobility, and how science has the potential to a powerful tool in promoting active citizenship. The key findings detailed are:

1. Lack of interest in science is not the problem

2. Careers provision is not reaching all students

3. Science Capital is key

4. Science is seen as only ‘for the brainy’ and ‘a man’s job’

Our recommendation is to change the system, not the students; we call for a review of both the stratification of science at KS4 and the longer-term desirability of A levels.

The full article can be found on the Skills, Employment and Health Journal’s website here .

(Why) is femininity excluded from science?

By IOE Blog Editor, on 18 November 2016

— Emily MacLeod

The lack of gender diversity within science is well documented and well researched. Many have attempted to pinpoint the reasons for the lack of women participating in science, and/or generate methods to solve the sector’s lack of diversity. However, whilst there remains a great deal of focus on the subject of Women in Science, discussion is lacking when it comes to the role femininity plays within this.

(more…)