X Close

STS Observatory

Home

Menu

The European Centre for Disease Prevention and Control: Science and Political Integration in Europe

By ucrhmrr, on 2 August 2013

John Krige (1997) has alerted us to the contribution of scientists and not governments in re-organising where and how science is done, particularly in the organisation of transnational scientific cooperation. When viewed from this perspective, new and unexplored histories of science and politics are written. Since the Second World War, the most active geo-political region of scientific cooperation has been Europe, and this cooperation forms a significant part of what we call European integration. Yet what we know about European integration is dominated by political histories which privilege conventional ‘political’ integration commonly thought of as Member States ceding sovereignty to the European Community. Such histories according to Neil Rollings (2007) focus on top political figures and civil servants as the decisive actors. What is surprising is that when we look at European scientific cooperation this often precedes and draws after it conventional ‘political’ integration. From this perspective, scientific cooperation can be seen as a politically creative and binding force. The European Centre for Disease Prevention and Control is a good example of precisely this.

Based in Stockholm, the European Centre for Disease Prevention and Control (ECDC), an agency of the European Union officially began life in May 2005. The only serious history yet to be written about the ECDC, as far as I am aware, is by Scott Greer whose account of the ECDC’s origin follows the approach taken by many ‘politician-centric’ histories. Greer tells us that if we want to know why the ECDC came into being, we will have to know more about the activities of a top civil servant Fernand Sauer, and a former European Union Commissioner of public health David Byrne. This is misleading. The ECDC’s mission and organisational structure is based on the planning and lobbying of European epidemiologists and microbiologists during the 1990s who developed, often in competition with one another, what they thought would be more effective ways to control and prevent disease.

In 1992, two epidemiologists Chris Bartlett and Gijs Elzinga proposed to the European Commission that it would be beneficial to identify gaps and duplications in all of the international surveillance and training collaborations that were then currently taking place in the European Union. Following the conclusion that there were gaps (for example in food-borne diseases) and duplications, Bartlett and Elzinga asked for funding from the European Commission for twice-a-year meetings and for a small technical support unit so epidemiologists from participating Member States could strategically develop the surveillance and research of communicable diseases. The Commission agreed to fund this, and what was known as the ‘Charter Group’ emerged at the beginning of 1994 bringing together heads of communicable disease centres from around the EU on a voluntary basis.

Under the Charter Group, a network of disease-specific programmes were developed which used existing national centres like the Réseau National de Santé Publique in France to serve as focal points for the European surveillance of specific diseases such as AIDS and Salmonella infection. This approach to controlling disease became known as the Network Approach. The Charter Group established European data-sets, identified emerging diseases, and assisted in the response to national outbreaks. In 1995 the Charter Group initiated a new monthly and weekly bulletin called EuroSurveillance (now under the auspices of the ECDC) as a way to bring the editors of national surveillance bulletins together from EU member states. Also established by the Charter Group in 1995 was a European training programme for epidemiologists, the European Programme in Intervention Epidemiology Training (EPIET) to produce individuals competent to undertake epidemiological investigations at an international level, which has also been absorbed since by the ECDC.

What was distinctive about this new approach to controlling disease was that it went beyond research collaboration and involved coordinating and harmonising the surveillance and research of communicable diseases between existing national centres of disease control. A new mechanism in choosing what research to undertake was created; prioritising research against the need for it on a European scale and gauging the urgency of research on the increasingly integrated surveillance network. The Charter Group’s network approach was politically sanctioned in September 1998 with A Network for the Epidemiological Surveillance and Control of Communicable Diseases in the Community established by an Act of the European Parliament and the Council of the European Union. This was complemented in 1999 by an EU-wide rapid alert system, intended to enable rapid transmission of confidential data between national health authorities in the event of an emergency.

The Charter Group was not the only organised lobby for the future of communicable disease control however. Since 1996, another and competing vision of what the future of communicable disease control would look like in Europe was emerging. It was led by microbiologists for instance from the European Society of Clinical Microbiology and Infectious Diseases, but most prominently Michel Tibayrenc of the Centre d’Etudes sur le Polymorphisme des Micro-organismes in France who were in favour of a central European organisation. The institutions of the European Union paralleled this divide. The European Parliament was in favour of a centre for communicable disease as an institution of the European Union. The European Commission and the Council of Ministers however were in favour of the network approach. In October 1998, a month after the act declaring the network approach as the preferred technique of surveillance, two voluble epidemiologists Weinberg and Giesecke, attempting to staunch the flow of the idea of a central organisation, declared that the ‘idea of a central edifice seems to be politically dead’.

In the wake of the pronouncement that the idea of a central edifice had been defeated, in 1998 Michel Tibayrenc initiated discussions at the International Board of Scientific Advisors in September 1998 and created a European Centre for Infectious Disease (ECID). This was essentially a lobby group, mostly comprised of microbiologists, advocating a European centre. The ECID had a ‘scientific board’ of around 30 people and a steering committee who advocated a European equivalent of the US Centers for Disease Control (CDC f.1946). The US CDC, mirroring a long history of US promotion of European integration, took a personal interest in furthering the cause of the ECID with the head of the CDC’s parasitic diseases division Dan Colley, sitting on the scientific board of advisers to the ECID. Furthermore, public health representatives from developing countries and former Soviet states were also supportive of a European centre for controlling communicable diseases, because the ECID promised to provide expert assistance and exchange information with these nations.

Advocates of both the network approach and the ECID explicitly contested each other’s claims about what benefits each approach had. Leading epidemiologists argued that the proposed coordinating functions of a centre were already being performed by the network approach. The ECID specifically countered this, arguing the network approach alone was not good enough as national centres of communicable disease were ill-prepared to face a major challenge such as bioterrorism and were not fulfilling their aim of preventing gaps and duplications in research. The idea of an initiating but disunited science community mirrors John Krige’s history (1989) of the origins of CERN in the early 1950s. Krige shows how two competing visions existed within the physics community of how European states should cooperate in nuclear physics research. One side advocated a network of nuclear research using existing laboratories and another advocated a European research laboratory and to build there a nuclear accelerator to compete in power with the nuclear accelerators at Brookhaven and Berkeley in the United States. Krige points out the two sides were not in opposition, both saw the value in cooperating, but had different views on how to cooperate.

Tibyrenc’s vision of what a central organisation should do has been reflected in the creation of the ECDC to a remarkable extent. Tibayrenc thought a central organisation would strengthen the effectiveness of the ‘network approach’ but should also take an active researching and surveillance role, and this dual function has been incorporated by todays ECDC. A good example of how the ECDC mirrors the ideas of Tibayrenc is shown in the first actions by the ECDC upon its inception. The ECDC was established concomitantly with the 2005 outbreak of H5N1 Influenza (Bird Flu) and formed part of outbreak investigation teams. In Turkey and Romania, three ECDC staff were on the ground all the time and an ECDC scientist was leading the investigation in Iraq. Here, the ECDC emulated Tibayrenc’s vision of a future ECDC having a mobile scientific staff and his conviction that disease within Europe can only be controlled by a European centre working in non-EU states as well as in EU member states.

Distribution of the Aedes Albopictus mosquito, a native of southeast Asia, and a vector of many emerging diseases in Europe

This map, produced by the ECDC shows the distribution of the Aedes Albopictus mosquito in Europe and bordering nations. The mosquito, a native of southeast Asia is a vector of emerging diseases in Europe such as West Nile Fever.

We don’t know how far the ECID’s lobbying and Tibyrenc’s efforts directly influenced the political conviction to create the ECDC. But we do know the European Parliament was largely in favour of the centre from the start of Tibyrenc’s lobbying. We know that from 2002, the European Commissioner for public health David Byrne seems to have come on board with the idea, announcing in a speech to the Red Cross and Red Crescent in Berlin, that ‘plans are in preparation to set up a European centre for communicable diseases, to become operational in 2005’. There were other factors involved too that could have triggered or given substance to justifying the need for a centre of disease control such as the threat of bioterrorism after 9/11 or the 2003 severe acute respiratory syndrome (SARS) outbreak. But perhaps we should not place too much emphasis on these causes. They obscure the fact that the ECID had already lobbied for a European centre from 1998 and anticipated how it would work, as well as the fact that there was already in place a formal European network approach to disease control which took shape from the early 1990s.

According to Colin Talbot (2004), agencies such as the ECDC have been created in the wake of a citizenry increasingly sceptical of experts and politicians. Talbot says that agencies gain public trust through being autonomous from a centralised government. However, this approach mistakenly views agencies only through the eyes of worried politicians seeking to gain trust for expertise. As we have seen however, the ECDC was not founded on a need to gain support from a sceptical citizenry, it was the culmination of many years of lobbying to improve the effectiveness of disease control. Moreover, agencies can be very different to one another. For instance, Waterton and Wynne (2004) argue that upon its inception in 1993, the European Environment Agency (EEA) was in competition with other institutions and organisations, the European Commission’s DG for the Environment in particular. Moreover, they argue that the EEA was not intended to influence policy networks (despite it might have the ambition to do this). Scott Greer’s account of the ECDC differs from this in arguing that the crowded but fragmented institutional landscape of communicable disease control, rather than being a source of competition, is the raison d’etre for the existence of the ECDC, and is the sinews of its future growth. Of course, what Greer misses is that this rationale was developed independently by the Charter Group and the ECID.

This brief account of the ECDC has been all about its origins and not about the ECDC itself. But there is a reason for this. How the origin of a European agency is perceived, or any other type of science-based organisation, changes what we think of that agency in its current form. If looked at from a conventional political perspective, the ECDC looks like a weak organisation amongst what Scott Greer calls ‘a crowded institutional landscape’. However, if we acknowledge that the ECDC assimilated novel and ambitious projects to coordinate the research and surveillance of, and the training for, communicable diseases in Europe, the ECDC represents a new way of controlling and preventing disease which did not exist prior to the 1990s. When the origins of the ECDC are taken into consideration, the ECDC does not look like a beginning in the European control and prevention of communicable disease, but the culmination of a new way to govern communicable disease in Europe.

 

Bibliography

Krige, John., Why Did Britain Join CERN, in David Gooding, Trevor Pinch, Simon Schaffer (eds.), The Uses of Experiment: Studies in the Natural Sciences, Cambridge University Press, 1989 : 385-406

Krige, J, Pestre, D., Some Thoughts on the Early History of CERN, in John Krige, Luca Guzzetti (eds.), The History of European Scientific and Technological Cooperation, Luxembourg: Office for Official Publications of the European Communities, 1997 : 36-60

Waterton, Claire & Wynne, Brian., Knowledge and Political Order in the European Environment Agency. in Sheila Jasanoff (ed.), States of Knowledge: the co-production of science and social order, Routledge, London, 2004 : 87-108.

Talbot, Colin., The Agency Idea: Sometimes Old, Sometimes New, Sometimes Borrowed, Sometimes Untrue, in Christopher Pollitt and Colin Talbot (eds.), Unbundled Government: A Critical Analysis of the Global Trend to Agencies, Quangos, and Contractualisation, Routledge, 2004 : 3-21

Talbot, Colin. Pollit, Christopher. Bathgate, Karen. Caulfield, Janice, Reilly, Adrian, Smullen, Amanda., The Idea of Agency: Researching the Agencification of the (Public Service) World, Paper for American Political Studies Association Conference, Washington DC, August 2000 : 1-22

Greer, Scott L., The European Centre for Disease Prevention and Control: Hub or Hollow Core? Journal of Health Politics, Policy and Law, Vol. 37, December 2012 : 1001-1030

Tibayrenc, Michel., A European centre to respond to threats of bioterrorism and major epidemics, Bulletin of the World Health Organization, 2001, Vol 79 : 1094

Tibayrenc, Michel., The European Centre for Infectious Diseases: An adequate response to the challenges of bioterrorism and major natural infectious threats, (Elsevier) Infection, Genetics and Evolution, 1, 2002 : pp.179–181

Tibayrenc, Michel., European centre for infectious disease, The Lancet, Vol 353, January 23, 1999 : 329

Giesecke, Johan., Surveillance of infectious diseases in the European Union, The Lancet, Vol 348, December 7 1996 : 1534

Giesecke, Johan, Weinberg, Julius., A European Centre for Infectious Disease?, The Lancet, Vol 352, October 17, 1998 : 1308-1309

Rollings, Neil., British business in the formative years of European integration: 1945-1973, Cambridge University Press, 2007
Byrne, David, (Reported by Twisselmann, Birte)., Eurosurveillance, Volume 6, Issue 17, 26 April 2002

 

Asking the tough questions on science policy

By andrea marchesetti, on 2 March 2009

A scientist discussing science policy on a major news programme is a welcome, if too infrequent, happening. Particularly so when the scientist is a Nobel Prize geneticist being interviewed on the role of scientific authority in a democratic society and on the appropriate level of funding for science during a recession.

The  interview, well-worth watching, is online on HardTalk’s website. Sadly,  Sir Paul Nurse‘s representation of the scientific community’s view compounded factual inaccuracies, a simplistic economic analysis, and a skillful evasion of any reference to philosophical or political grounding of his views on science policy and public understanding of science.

How much is enough?

Sir Nurse opened the interview stating his appreciation for the intention to “restore science in his rightful place” announced by Barack Obama in his inaugural speech, arguing that this should be achieved through a boost in funding and restoring the use of scientific expertise to inform public policy. But how much should be paid to restore the prestige of science?

Asked whether there actually is a “cause-effect link between spending whole lot new money and getting results”, Nurse replies obliquely with an exposition of the admittedly imperfect linear model. The US status as the world’s “powerhouse for science and translation of science” depends on its ability to translate basic science “into both creation of wealth through commercial development and also improvement in health” and quality of life:

[We] generate fundamental understanding and increases in knowledge that is available to the world. That increase in knowledge is absolutely crucial. But then around it what you need are spin-off relationships with those who are interested in the application of this research, who can pick up that freely available increase in knowledge and harness it into more applied uses. And that we do not yet think we have got quite right.

The traditional “public good” conception of science and the faith in spin-offs from basic research to technological innovation in the long run make it impossible to make rational evaluation on appropriate level of funding for science. How much is enough? Never.

A tradition of public funding

Nurse also argued that the US should return to their “traditional focus on the scientific endeavour in the public domain for the public good”. However, that America had a tradition of high public investment in science is inaccurate. The first graph below (representing the private- and public-sector contribution to US R&D and to basic science from 1940 to 1990) shows that there has never been a dominating tradition of public spending on science once one discounts the military spending that constituted the great part of the additional public spending during the Cold War (as shown in the second graph, documenting the US federal spending by category).

Science in a democracy

Nurse avoided pronouncing on the question of who should have the final say on future directions of science – citizens through their elected government or scientists themselves through self-government?

When we have been unhappy is not so much when society and politicians would make decisions that are based on the scientific evidence and then make the best decision (because society needs to have its impact); it’s when they try to ignore the science or actually even distort the science to defend a certain ideological position.

According to Nurse, if policy-makers listen to the scientists and if society is well-informed on the facts, then no problem shall arise. Problems in science may only come from the politicisation of science, i.e. from impure fact.

Challenged after his naive deficit-model answer to explain the growing distance between the scientific community and large sections of the public on topics such as human embryonic stem cell research, evolutionary biology, and climate change, Nurse chose again not to address the question of the legitimacy and accountability of scientific research in a democratic society.

Federal research is surely funded “by the people” and performed “for the people”, but Nurse struggled to explain how science could have any legitimacy “of the people” despite being rejected on philosophical, religious, or political grounds, Nurse had to resort to an eclectic bunch of justifications:

a) on stem cell research: there is a opinion-poll majority in favour of it (implying that the scientific community and “the people” should have the last say on which research should go ahead, until the government changes)

b) on climate change: the government is manipulating the fact and public opinion (implying that the scientific community alone should have the last say on which research should go ahead, until the government or the “people” come to reckoning)

c) on evolutionary theory: “what it means is that science education is failing in our school and public engagement with the media and so on is also failing” (implying that the scientific community alone should decide which research should go ahead, because society “is failing” science)

In other words, publicly-funded science is legitimate and democratic as long as the scientific community gets its way. For, Nurse argues, what counts for science in a democracy is not to come to precautionary, consensual, or widely-endorsed conclusions, but to reach the correct decisions, where the meter of correctness is held by the scientific community and handed down to the lay public:

we need to have a very good dialogue between science and scientists, and the public and society because so many decisions that we have to make in the modern world depend on science and technology. And if the public cannot get properly engaged with science and if scientists cannot help them with that, we are going to make incorrect decisions.

Nurse’s discourse is entirely formulated on the opposition between objective facts and ignorance of science, between scientific purity and political irrationality. Apparently, the solution to the culture war shouldn’t require much more than getting ourselves properly engaged and accepting scientists’ help.

Sir Nurse admitted: “at my low points I contemplated other alternative careers including study of the philosophy or sociology of science”. Nevertheless, as former head of the Science in Society programme at the Royal Society, he should know better.

The economic crisis and eventual cuts in government spending seem to me to create great opportunities for people who are willing to think creatively about science policy – redefining expectations and function of science funding, introducing meaningful science-citizenry engagement, rethinking the relation between politics and science. Hopefully STS graduands facing the possibility of having a lot of spare times in their hands might give it some thought as a career option.

(The graphs come from Mowery, D. C. and Rosenberg, N. 1989. Technology and the Pursuit of Economic Growth. Cambridge: CUP)