New international panel promotes responsible resource extraction in the Arctic

By Rebekah Yore, on 19 October 2018

Blog post by Dr Emma Wilson and Professor Indra Overland

A pioneering new international panel is currently recruiting members to help promote better environmental performance in Arctic resource extraction industries, while pushing the boundaries of applied research.

The International Panel on Arctic Environmental Responsibility (IPAER) was introduced to London audiences on 17th October 2018 at University College London (UCL), at an event hosted by the London Polar Group and the Polar Research and Policy Initiative. The session was led by the architect of IPAER, Research Professor Indra Overland of the Norwegian Institute of International Affairs (NUPI) in Oslo, and Dr Emma Wilson, independent researcher and consultant, who is an IPAER Advisory Board member. The aim of the event was to raise awareness about the initiative, stimulate debate and encourage new members to join.

Hammerfest, Norway (photo credit: Dr Ilan Kelman)

The IPAER is an independent group of experts who have been tasked with assessing the environmental performance of oil, gas and mining companies in the Arctic, based on their professional or lived experience of these industries.

Issues to be considered by the Panel range from conservation to pollution prevention, from Indigenous rights to transparency and public reporting. Panel members are expected to be experts in some, but not all, of these questions. The IPAER aims to cover the full range of issues by recruiting a balanced and broad range of Panel members, including technical industry experts, local community and civil society representatives, academics, industry consultants, journalists and regulators.

Damaged forest at old drilling site, Komi Republic (photo credit: Dr Emma Wilson)

Panel members take part in a simple perceptions survey, which requires them to identify the companies they are familiar with and then rank them in relation to one another. The results will be published as an open-access ranking of companies.

Panel members are expected to base their perceptions on the facts and realities that they have encountered through their professional and lived experience. Where perceptions are not based on fact, but on lack of information or misinformation, this raises the issue of more effective, accurate and well-targeted communication on the part of industry, the government, the media and civil society. We hope the IPAER can trigger more of a debate around this question, and ensure that the right issues are discussed more objectively in the public domain.

The IPAER is an experiment in what could be called ‘governance without enforcement’, as a complement to legal and formal regulation. We hope that it will trigger public debate and dialogue, internal corporate thinking, and proactive responses from industry, stimulating an environmental ‘race to the top’. But its success depends on our ability to recruit as many Panel members as possible.

If you would like to become a member of the Panel, we would love to hear from you!

Please contact:

Research Professor Indra Overland: ino@nupi.no

Dr Emma Wilson: emma.wilson@ecwenergy.com

Newly Published Paper on Microinsurance for Disaster Recovery

By Rebekah Yore, on 4 October 2018

Joanna Faure Walker and I have recently published our paper entitled “Microinsurance for disaster recovery: Business venture or humanitarian intervention? An analysis of potential success and failure factors of microinsurance case studies” in the International Journal of Disaster Risk Reduction.

The paper is based around a review of a number of microinsurance case studies from the last 20 years and from around the world. Microinsurance as both a humanitarian and a development initiative has evolved significantly to incorporate new partners in the design, supply and delivery of more contextually appropriate and socially conscious financial products for lower-income markets. However, there is certainly no one-fix-all solution to the provision of financial services to low-income populations, particularly in relation to assisting with disaster relief, recovery and longer-term resilience building, and many either fail to deliver on their initial objectives to protect people or they simply fail to operate sustainably and cease their services.

In our paper, we begin exploring what factors may contribute towards the success and failure of global microinsurance products, and discuss whether microinsurance products can serve as effective humanitarian interventions in times of crisis, or better serve as viable business propositions, or serve their communities as a combination of the two, depending on the context. Our findings, along with our suggestions of minimum metrics for recording the performance of microinsurance programmes over time, are intended to help further the discussion on defining microinsurance, to inform microinsurance initiatives that may be set up to address the challenges of post-disaster transitions to recovery, and to aid in the tracking of longer-term community impact.

Visit here to read more and to download the paper.

 

Rebekah Yore

UCL Institue for Risk and Disaster Reduction

rebekah.yore.14@ucl.ac.uk (07732 174252)

Induced earthquakes – how and when they have occurred, and why should anyone care

By Joanna P Faure Walker, on 27 September 2018

Despite the high volume of material out there about induced earthquakes, it can be hard to separate fact from opinion. To help explain what induced seismicity is, how it is caused and what the risks are, a group of researchers from UCL Department of Chemical Engineering and Institute for Risk and Disaster Reduction have published “Addressing the risks of induced seismicity in subsurface energy operations”.

What causes “induced seismicity”? Induced earthquakes, those mainly caused by human action, can invoke strong feelings towards the processes that cause them, the most widely known among these is hydraulic fracturing (less favourably known as “fracking”). But hydraulic fracturing for shale gas extraction is not the only cause of induced earthquakes – several industrial activities are capable of inducing or triggering earthquakes, including mining, dams, conventional oil and gas operations, groundwater extraction, CO2 Capture and Storage (CCS), underground waste fluid disposal and the creation of geothermal energy systems. Rightly or wrongly, negative public perception and local public opposition to induced seismicity has led to numerous international projections having been suspended, delayed or curtailed.

How does industrial operation induce earthquakes? The Earth’s crust is believed to be in a state where it is critically stressed and only small stress changes in the right direction can cause an earthquake. Industrial action can alter the stress field in the most shallow part of the Earth’s crust, inducing a seismic event.

Are these events getting more likely? The number of documented cases of man-made earthquakes in different industrial activities is rapidly increasing: In 2017 alone, there were two reported record-breaking magnitude induced seismic events. One of the more well-known areas of induced seismicity is in the United States: The notable increase in seismicity within the last decade in the previously seismically quiet State of Oklahoma has been widely attributed to large scale waste water injection wells connected to the hydrocarbon production industry.

How big are induced earthquakes? Most induced earthquakes are low in magnitude (typically less than magnitude 4). However, even these small events are capable of causing structural damage to properties and evoking widespread fear and anxiety. We say most are small, but there are some examples where large magnitude earthquakes have been alleged to be caused by human activities. For example, in China in 2008, a dam was built that filled a reservoir behind it. A short time later, a magnitude 8 earthquake occurred in the region. Some scientists proposed this large earthquake was caused by the mass loading of the water in the dam and its penetration into rock, affecting the subsurface pressure in an underlying fault line and possibly setting off a series of ruptures that led to the earthquake.

So what is being done about it? Minimising seismic risk should be a high priority for industrial operators. All fluid injection processes should require detailed seismic hazard assessments for imaging and characterising faults prior to operations, with dedicated monitoring systems in addition to existing national seismic monitoring facilities. For assessing the risks, monitoring the operations, and designing mitigation strategies using predictive models that can characterise the spatiotemporal evolution of induced seismicity would be extremely helpful. Examples of best practice approaches show that maintaining a transparent dialogue between operator and the public, while adhering to the regulatory processes can allow safe operations in an atmosphere of public acceptance.

Where can I find out more? With all the controversy around such events, we need to understand what are the risks of induced earthquakes and how can we model them. In the published article in Wiley Interdisciplinary Reviews, Richard Porter, Alberto Atriolo, Haroun Mahgerefteh and Joanna Faure Walker provide a review of several alleged induced seismicity case studies that have occurred in the last 15 years covering a variety of causal mechanisms. We discuss issues relating to public perception and procedures and strategies that could be implemented to help prevent and mitigate future occurrences.

The above work was funded by Horizon 2020 research and innovation programme, Grant/Award Number: 640979

Fault2SHA has successful session at ESC 2018 in Malta

By Joanna P Faure Walker, on 7 September 2018

The Fault2SHA ESC (European Seismological Commission) Working Group hosted a session on Wednesday 5th September at the ESC 2018 Meeting held in Valletta, Malta. Oona Scotti represented the group in her keynote on the opening day of the conference, in which she addressed “Modelling fault systems in PSHA: Challenges Ahead”. The Fault2SHA Working Group, for which I am on the Executive Committee, links different researchers working on faults and seismic hazard assessment (SHA) in Europe and beyond. This collaboration has brought together field geologists, fault-modellers and probabilistic seismic hazard modellers. The group provides a forum in which data, results, modelling capabilities, and improvements in scientific understanding can be shared. If you want more information, and to join, see Fault2SHA. The next Fault2SHA workshop will be in Kaust, Saudi Arabia, in November 2018 and the next meeting will run on 3rd-5th June 2019 in Barcelona, Spain.

I lead the Fault2SHA Central Apennines Laboratory. Our team comprises researchers from Italy (Paolo Boncio, Bruno Pace, Laura Peruzza, Francesco Visini), France (Lucilla Benedetti, Ooona Scotti) and the UK (Joanna Faure Walker, Gerald Roberts). At ESC in Malta, I introduced the central Apennines Laboratory and our current activities to the wider working group. The Central Apennines, as well as being a beautiful place to conduct fieldwork with the opportunity to obtain detailed datasets, suffers from large magnitude earthquakes. Indeed, earthquakes in the Central Apennines have featured widely in the UK press due hosting the two deadliest earthquakes in Europe of the last ten years: the 2009 L’Aquila sequence and the 2016 Amatrice-Norcia sequence.

 

The Fault2SHA Central Apennines Laboratory, which formed in January 2018, held an in-person meeting in July at the University of Chieti-Pescara, Italy. The photograph shows (from left to right) Oona Scotti, Francesco Visini, Joanna Faure Walker, Bruno Pace, Laura Peruzzi, Lucilla Benedetti, and Paolo Boncio.

During the Fault2SHA ESC session, I presented a second talk and a poster about my research investigating the importance of incorporating detailed fault geometry for understanding seismic hazard. The oral presentation demonstrated the importance of incorporating detailed fault geometry and loading on faults between earthquakes in Coulomb Stress Transfer modelling, a process that causes the stress on faults to change in response to an earthquake on a neighbouring fault. This was based on work carried out by Zoe Mildon (former IRDR PhD student, now a lecturer at the University of Plymouth) in collaboration with Gerald Roberts, Shinji Toda and myself (see Midon et al. 2016 and Mildon et al. submitted preprint). The poster displayed the importance of detailed fault geometry and slip-rate data for calculating earthquake probabilities and ground shaking intensities. I further represented Zoe for her poster within the session on earthquakes in regions of distributed deformation, that showed surface ruptures from the 1997 Colfiorito Earthquake in the central Apennines was due to primary earthquake slip (see Mildon et al., 2016 for details).

I thank all those at the conference with whom I had interesting discussions and I look forward to seeing all of our research progress.

Report of the 43rd Natural Hazards Workshop, Colorado

By Rebekah Yore, on 30 July 2018

Blog post by Justine Uyimleshi and Emmanuel Agbo

 

The natural hazard workshop is an annual event organised by the Natural Hazard Centre in collaboration with the University of Colorado Boulder around the field of disaster management and emergency response to trigger interactions and contributions from different experts in the field of disaster management and humanitarian responses. This year’s workshop, which was held in Omni Interlocken Hotel Boulder, Broomfield Colorado, from 8 – 11 July 2018 attracted over five hundred participants including disaster managers, emergency response personnel, practitioners and academia from around the world with different expertise in interactive sessions around pertinent issues that globally result in loss of lives, property damage, loss of economic values and human displacement. As a part of the IRDR strategy for promoting continuous research around disaster risk reduction (DRR) and expansion of networks in strengthening collaborations with other disaster management and emergency response entities across the world, the Institute through its research assistance funding provided support for two of its PhD researchers, Justine Uyimleshi and Emmanuel Agbo, to take part in this international event. Our participation in the workshop availed us the opportunity of interaction amid experts with different knowledge about disasters and present our research to the international communities.

Presenting our research

The workshop was full of several concurrent sessions that created opportunities for vast interaction around social media and disasters, data and partnership need for improved disaster response, cascading disasters, institutional settings, community impact and recovery from disasters, Health and wellbeing of disaster respondents, among others which enriched our understanding of the different thematic areas of disaster management. Most interestingly, the workshop further availed us the opportunity during the researcher’s meeting to moderate sessions of paper presentations as efforts in promoting the IRDR commitment in global events.  Also, of great attention from the workshop was our meeting with Jim Murphy, project director, Civil/Water Resource Engineering, DC Metro Area. Jim in admiration of our presence in the workshop and presentation during the workshop sessions demonstrated a benevolent act towards us and offered us a tour to the wild fire and flood devastating sites in Broomfield.

On this tour, we were able to see the available response facilities, and measures that are in place to quell the likely impact from future occurrence of these hazards. Finally, we extended the exploration of Colorado to the Gold hill town, where the coal exploit took place and the city mountains, which are part of the historical features of Colorado. Resulting from our experience of this workshop, we wish to express our profound appreciation to the IRDR for their continuous support. The workshop was greatly an event worth attending.

A Short Tale of Fieldwork

By Claudia Sgambato, on 26 July 2018

Fieldwork represents a fundamental part of my PhD research, and, as a geologist, it is also my favourite part of the job. In June 2018, I flew to Italy for the first of many fieldtrips, with Joanna Faure Walker, my primary supervisor. Together we worked for five days to conduct detailed mapping of and data collection from the Auletta fault, located in Campania, Southern Italy.

The Italian Apennines are undergoing a southwest-northeast extension, associated with earthquakes of moderate and large magnitudes, occurring on active normal faults. The exact location of these faults and rates of movement across them represents an important factor for the seismic hazard.

The fault studied is located in the Vallo di Diano, one of the extensional intramontane basins that characterise this sector of the Southern Apennines; the basin, filled by river and lake fan and slope deposits, is bordered on the East side by a major fault system, terminating to the North with the 3 km long fault strand that was the object of this study.

The Auletta fault scarp seen about half way up the slope as a grey line that offsets the topography, where my fieldwork was focussed. This fault scarp crosses the Cretaceous carbonates of Mt. San Giacomo for about 3km (photograph credit: Claudia Sgambato).

Many large magnitude earthquakes have struck the Southern Apennines in the past 1000 years, with an average of one event every 50 years. For instance, in 1694, a M=6.9 event with epicentre in Irpinia caused about 6000 casualties; in the same area, in 1980, a M=6.9 earthquake caused about 3000 deaths. Some events had damage consistent with them possibly occurring on the Auletta fault, like the two events in 1561 (M=6.7) that caused 600 casualties. Moreover, there is a debate on the location and nature of the structure responsible for one of the strongest earthquakes in the area, which occurred in 1857 in the Northern Vallo di Diano and Val d’Agri, causing between 10,000 – 20,000 casualties.

The main aim of my fieldwork on this trip was to collect detailed data along the fault scarp of the fault geometry (strike and dip), together with offset and slip direction data, to understand how these vary along what we consider the termination, or tip, of the fault. In fact, my research project investigates how the geometry of both individual faults and fault arrays in the Central and Southern Apennines influences the seismic hazard. All these data collected in the field, such as the fault orientation, length, strike and dip, slip to length ratios, will be used to study what controls the variability in slip-rates along the faults and how the fault geometry and faults interaction can affect earthquake recurrence intervals.

Joanna is taking measurements of the strike and dip of the fault (photograph credit: Claudia Sgambato).

Our typical day in the field started with an early breakfast, to avoid the heat and to reach the fault scarp at an elevation of 750m, as soon as possible. Then we walked along the scarp, taking measurements of strike and dip and slip vector, and where possible, measuring the throw using a meter ruler, which requires lying on the ground and sliding through the slope for about 100m.

You would think that the best part of fieldwork is the immersion in nature, with the fresh breeze and the warm sun of an early summer in Italy. Indeed, growing up in southern Italy means I have many such memories. But, there is the other side of the coin: imagine starting a day by facing some steep, slippery, muddy, slopes, covered in thistles, the kind that grows taller than you! Then later in the day, while working in the sun, suddenly heavy clouds cover the sky and rain, loud long-lasting thunders, and all the things you don’t expect from an Italian summer, happen, every day over those five days. And while you are trying to save your precious maps and notebook from the pouring rain, your legs and arms experience all kinds of thorns and stings. Well, this is fieldwork! The joy of working in the best “office” in the world, and all the (mis)adventures that come with it.

Negotiating through the thistles on my way up to the fault scarp – the Vallo Di Diano in the background – my “office” view (Photograph credit: Joanna Faure Walker).

Even if this field trip wasn’t exactly as expected, I learned a lot thanks to Joanna. We had a fun time, enjoying the stunning views, and more importantly, we brought back some interesting data that will keep me busy while I am already organising my next trip.

Happy to have escaped the thunderstorm, after anticipating its coming and climbing to the top (Photograph credit: Joanna Faure Walker).

Pressure Cooker in Mexico City

By Lucy K Buck, on 5 July 2018

On the 14th May 2018 I found myself in a room in the beautiful Palacio de Mineria in Meixco City. Me and 34 other young researchers from various different disciplines were there to be part of the first 24-hour Pressure Cooker, organised by the Water Youth Network as part of the Understanding Risk Conference. We were to be split into groups to work on case studies looking at either hazards either in Izapalapa, Meixco City or Dzilam de Bravo, Yucatan. The aim was to develop a risk communication strategy for hazards, such as flooding, subsidence and fracturing, that these areas suffer from.

And this is where it became clear why we were in Mexico. Mexico suffers from geological (earthquakes, volcanic eruptions, subsidence, fracturing and landslides), hydrological (flooding and drought), meteorological (hurricanes) and anthropological (over fishing, pollution, over exploitation of resources, over population) hazards. In fact, the area that my group was given, Izapalapa, suffers from both extreme flooding and water shortages, and often people’s houses are flooded but they have no drinking water. Of course many of these are interconnected, compounding the problem (shortage of drinking water -> over extraction of ground water -> subsidence -> flooding).

Iztapalapa, con el poder de la gente – with the power of the people

 

Iztapalapa

With a population of roughly 1.8 million Iztapalapa is the most populous and fastest growing district of Mexico City. It is also the poorest with most of the population living in substandard conditions, often without running water and electricity. However, the area has a very strong sense of community and a high literacy rate, only 4% of the population over the age of six is illiterate. This is a community that is very well aware of the problems the district faces but has very little knowledge about how they can have a meaningful impact in reducing these risks.

Go Team 1!

 

The Challenge

We had 24 hours to come up with a viable communication plan to help reduce the vulnerability and increase the resilience of this community. With support from experts in communication, urban planning and relevant hazards, as well as representatives from the local Government. As well as the different specialities represented by our team (my team included a geophysicist, an urban planning, a psychologist and more!) we had the best chance to come up with a meaningful solution.

We decided the best strategy was to engage kids, getting them involved and helping solve the problem themselves.

We discovered that Mexico City had run a test pilot scheme where people would use a rain catcher to provide grey water for the house, reducing pressure on aquifers and the leaking water infrastructure and in the long term reduce subsidence and flooding risk. We decided to extend this to children. Teaching them how to make their own water catchers, which also lets them to contribute to the household and cut bills. Along with this we introduced our ‘Water Ambassador’ group where we would teach children about the importance of water conservation, this came with a badge once you built your own water catcher and helped conserve water in your home, and the ‘Guardians of the Drain’ which also came with a badge and organised teams of older children/teens to clean waste from the drainage systems to help stop flash flooding from these systems overflowing (this would obviously come with safety lessons).

Building a demo rain catcher at 1AM

 

After 24 hours straight of hard work, feeling very tired but gratified, we presented out communication plan to the rest of the participants as well as various experts and local representatives.

The vulnerability of Iztapalapa was highlighted the next day when, on a fieldtrip to the district, a 5.1 earthquake hit the city. Demonstrating how resilience methods can work, the early warning system had meant many homes had been evacuated and no damage or injuries occurred.

However, the most lasting and important outcome of this challenge were the connections and friendships that we all built during the exercise. These relationships are the best foundation on which to develop disaster risk reduction.

Some of the UR family

 

A massive thanks to the Water Youth Network and NERC, without whom this experience would not have been possible. Can’t wait for next time!

IRDR Masters student publishes Early Warning and Temporary Housing Research. This is part of the on-going collaboration between UCL-IRDR and IRIDeS-Tohoku University

By Joanna P Faure Walker, on 4 June 2018

Angus Naylor, an IRDR Masters student alumni and Masters Prize Winner, has published the research conducted for his Independent Research Project. The research was carried out as part of his MSc Risk, Disaster and Resilience with me, his project supervisor, and our collaborator at Tohoku University IRIDeS (International Research Institute of Disaster Science), Dr Anawat Suppasri.

Following the Great East Japan Earthquake and Tsunami in 2011, UCL-IRDR and Tohoku University IRIDeS wanted to join forces to learn more about both the fundamental science and impacts of disasters both in Japan and around the world. Naylor’s recently published paper adds to other collaborative outputs from the two institutes: Mildon et al., 2016, investigating Coulomb Stress Transfer within the area of earthquake hazard research; Suppasri et al., 2016 investigating fatality ratios following the 2011 Great East Japan Tsunami; and IRDR Special Report 2014-01 on the destruction from Typhoon Yolanda in the Philippines. The two institutions have met on a number of occasions, and have an upcoming symposium in October 2018.

In 2014, three and half years after the Great East Japan Earthquake and Tsunami destroyed much of Tohoku’s coastline, I led and Dr Anawat Suppasri organised a joint UCL-IRDR and Tohoku University IRIDeS team, visiting residents of six temporary housing complexes in Miyagi and Iwate prefectures. While there, we used written questionnaires and informal group interviews to investigate the suitability of early warning systems and the temporary housing among the elderly population affected by this event.

When analysing the results, we found overall that age was not the principal factor in affecting whether a warning was received, but did play a significant role regarding what was known before the warning was received, whether action was taken and how temporary and permanent housing was viewed. The results suggest that although the majority of respondents received some form of warning (81%), no one method of warning reached more than 45% of them, demonstrating the need for multiple forms of early warning system alerts. Furthermore, only half the respondents had prior knowledge of evacuation plans with few attending evacuation drills and there was a general lack of knowledge regarding shelter plans following a disaster. Regarding shelter, it seems that the “lessons learned” from the 1995 Kobe Earthquake were perhaps not so learnt, but rather many of the concerns raised among the elderly in temporary housing echoed the complaints from 16 years earlier: solitary living, too small, not enough heating or sound insulation and a lack of privacy.

An example of Temporary Housing following the Great East Japan Earthquake and Tsunami visited during the fieldwork for this study (Photograph: Dr Joanna Faure Walker)

The research supports previous assertions that disasters can increase the relative vulnerabilities of those already amongst the most vulnerable in society. This highlights that in order to increase resilience against future disasters, we need to consider the elderly and other vulnerable groups within the entire Early Warning System process from education to evacuation and for temporary housing in the transitional phase of recovery.

The paper, ‘Suitability of the early warning systems and temporary housing for the elderly population in the immediacy and transitional recovery phase of the 2011 Great East Japan Earthquake and Tsunami’ published in the International Journal of Disaster Risk Reduction, can be accessed for free until 26th July here, after this date please click here for standard access.

The authors are grateful for the fieldwork funds which came from The Great British Sasakawa Foundation funding to UCL-IRDR and MEXT’s funding to IRIDeS. The joint UCL-IRDR1 and IRIDeS2 fieldwork team comprised Joanna Faure Walker1, Anawat Suppasri2, David Alexander1, Sebastian Penmellen Boret2, Peter Sammonds1, Rosanna Smith1, and Carine Yi2.

Angus Naylor is currently doing a PhD at Leeds University
Dr Joanna Faure Walker is a Senior Lecturer at UCL IRDR
Dr Anawat Suppasri is an Associate Professor at IRIDeS-Tohoku University

Summary of Field Work on Sea Ice performed in Svalbard, March 2018

By Rebekah Yore, on 26 April 2018

Article written by Mark Shortt

For two weeks in March 2018, I travelled to the Arctic archipelago of Svalbard to conduct field experiments on sea ice as part of my PhD research. Svalbard is located at 74°-81°N, around halfway between mainland Norway and the geographic north pole. Travelling to Svalbard requires taking a 2-hour flight from the Norwegian city of Tromsø to Longyearbyen, the largest settlement on the archipelago with a population of just over 2000 people.

Location of Svalbard relative to mainland Europe, and a map showing the location of the field site

Once arrived in Longyearbyen, I went to the University Centre in Svalbard (UNIS), a local university specialising in Arctic studies. Here I met the team of researchers who I would be joining on the field expedition, led by Aleksey Marchenko, Professor of Ice Mechanics at UNIS. The field site was located within Van Mijenfjorden, an 83km long fjord approximately 50km south of Longyearbyen. Getting to the field site involved a roughly 3-hour long snowmobile journey from Longyearbyen to Svea, a small mining settlement located on the northern coast of the fjord. Here it was possible to stay in the mining lodges and eat in the communal canteen. The field site was located on the sea ice within the fjord, around a 10 minute snowmobile journey from Svea.

The edge of the sea ice cover in Van Mijenfjorden, located at Cape Amsterdam. Hidden in the clouds in the background is the Skobreen glacier

Sea ice occurs when the temperature of the air is lower than the temperature of the sea water for prolonged periods of time, reaching its maximum extent towards the end of the cold season. For the Northern Hemisphere, this corresponds to around late February and early March, which is why the field work was arranged at this time. The initial ice thickness at the field location within the fjord was around 60cm, but increased over the two week period. The air temperature over the field work period ranged between -10°C and -25°C.

The field site located on the sea ice within Van Mijenfjord

My research focuses on investigating the physical properties and strength of consolidated sea ice. The process of consolidation occurs in rafted and ridged sea ice – two commonly occurring features in the Arctic sea ice cover. Over time, freeze-bonds form between the constituent ice pieces, resulting in an overall strengthening of the features. When driven by winds and/or ocean currents, consolidated rafted and ridged sea ice may pose considerable risks to offshore structures and vessels operating in the region. It is therefore important that the physical and mechanical properties of the ice are well characterised over the consolidation period.

Large scale consolidation experiments were conducted with the aim of determining the time required for stacked blocks of sea ice to bond. Two experiments were set-up with differing ice orientations to investigate the effect of brine drainage on the physical properties and strength over the consolidation period. In both experiments, the temperature and salinity profiles through the ice were measured. In addition, the crystal structure of the freeze-bond layers formed between the ice blocks were deduced by taking thin sections of cored samples.

Experimental arrangement for field tests on sea ice consolidation

Other tests were conducted by the field group, with the aim of investigating the mechanical properties of sea ice. These included cantilever and Sodhi beam tests, drop block tests, small scale tensile and bending tests as well as full scale uniaxial compression tests. The influence of a vibroplate on the mechanical experiments was also investigated.

Due to incoming bad weather we were forced to leave the field site and return to Longyearbyen one day early. Unfortunately, this meant that I was limited in the number of strength tests that were performed in my experiment, the majority of which were scheduled for the final day. However, I believe that the results obtained will prove a useful comparison to similar smaller-scale tests to be conducted in the laboratories at UCL.

I would like to thank my supervisor, Professor Peter Sammonds for providing feedback and recommendations for my experimental plan prior to the field expedition. Special thanks to Aleksey Marchenko for the invitation for field work, and for the assistance in developing the experimental methodology. I also appreciate the support and hospitality of the other members of the field team throughout the expedition. Finally, thank you to the members of SAMCoT for providing the funds necessary for the undertaking of the experiments.

UCL IRDR Research Trip to Fukushima, Japan 2018

By Rebekah Yore, on 8 February 2018

Blog post written by Hui Zhang, Cate Howes and Peter Dodd

A group of students from the IRDR once again joined the Fukushima research trip, conducting fieldwork in the triple disaster affected area in Japan for a week in January this year. We collected information on how the Fukushima Prefecture and local communities are trying to recover from the disaster and rebuild a new life in the nuclear contaminated area. Here is a summary of our week:

Monday 15th January

On arrival in Fukushima, we were met by a lead engineering team and given a briefing on the events that had taken place in 2011, and the remaining effects on local prefectures such as the neighboring prefecture of Futaba and the residents that used to live there. Then we visited Fukushima Daiichi Nuclear Power Plant – a sight that we feel privileged to have experienced and were impressed by the resilience and appetite to recover from the disaster, and to learn so as to effectively move forward in the regeneration process. This was followed by an in-depth discussion and question and answer session between the team and two respective representatives of TEPCO, to help stimulate our appetites for our individual areas for research.

Tuesday 16th January

Visiting the High School

Our first stop was at the Robotic Limb Factory – an innovation company, originally focusing on the creation of mobile phone components, now pushing the boundaries on physical movement assistance after disasters. Here we learnt that since the disaster, employee numbers had been slow to return, however they were working hard to push Fukushima as a place for testing new and vital technologies, and above all a desire to work in the region. Then we went to one of the hardest-hit areas named Futaba-gun. Our first stop was a graveyard, home to the remnants of the previous residents of the unfortunate village, completely wiped out by the Tsunami. Here we were also taken to the waterfront by the local port, recently repaired and home to a very small 20-strong fishing fleet, to reflect on the damage caused.

Our final visit of the day was to a previous high school, now re-utilised by the prefecture as a museum for visitors. Here we were greeted by a local storyteller, who reminisced with us as we sat in the junior student chairs, of how the local area had been effected and how she had been scared for the safety of her grandson after the disasters.

Wednesday 17th January

National Institute of Advanced Industrial Science and Technology

On Wednesday we were privileged to spend time visiting some incredible members of the local area, who work tirelessly to rebuild and strengthen their communities. We started the day hearing from Aoki-san, a local storyteller who talked to us about the evacuation of her town after the nuclear accident. We travelled to the J-Village and spoke with Chef Nishi, who set up a restaurant to help the workers travelling to assist in the stablisation and cleanup of Fukushima Daiichi. We ended the day as guests at the Futaba Mirai Gakuen High School. We were treated to a presentation from the students on their views of the situation in Fukushima. We then heard poignant speeches from two students, regarding their personal experiences since March 2011. The whole group were deeply moved by this testimony, and inspired by the positivity and kindness of the students.

Thursday 18th January

Press coverage: Fukushima Minpo paper

We spent a fascinating morning at the National Institute of Advanced Industrial Science and Technology in Koriyama City. We were given a full tour of the facility, and were very impressed with the innovative research into renewable energy that the centre is undertaking. Later, we took part in a thought-provoking workshop with government officials and students from Fukushima University and High School, discussing the future of the prefecture. That evening, we were invited to a reception welcoming us to the city. We very much enjoyed speaking further with students and officials from the earlier workshop, and to hear their thoughts and plans for the future of Fukushima.

Friday 19th January

Press coverage: Fukushima Minpo paper

On the last day, we visited the electric power station that conducts binary generation using the heat from the Tsuchiyu hot spring located in the upstream of Arakawa river. It is an example of local efforts to create new energy alternatives to nuclear power. We then went to the Environmental Regeneration Plaza in Fukushima City, where we were told about the progress of environmental recovery in Fukushima, about radiation and about environmental regeneration such as interim storage sites.

After the site visit, we met with the Governor of Fukushima Prefecture, Mr Masao Uchibori. The Governor expressed his thanks for our visit and listened to our impressions of the recovery in Fukushima. We then had a lecture on disaster prevention in the Crisis management Centre of Fukushima Prefecture.

We concluded our 5-day trip to Fukushima on 20th February and returned to London. It was an amazing experience and insight into post-disaster recovery and Japanese culture, and we will continue to pay attention to the reconstruction of Fukushima into the future.